[1] |
BHAGAT J, SINGH N, NISHIMURA N, et al. A comprehensive review on environmental toxicity of azole compounds to fish [J]. Chemosphere, 2021, 262: 128335. doi: 10.1016/j.chemosphere.2020.128335
|
[2] |
CHEN Z F, YING G G. Occurrence, fate and ecological risk of five typical azole fungicides as therapeutic and personal care products in the environment: A review [J]. Environment International, 2015, 84: 142-153. doi: 10.1016/j.envint.2015.07.022
|
[3] |
PENG X Z, HUANG Q X, ZHANG K, et al. Distribution, behavior and fate of azole antifungals during mechanical, biological, and chemical treatments in sewage treatment plants in China [J]. Science of the Total Environment, 2012, 426: 311-317. doi: 10.1016/j.scitotenv.2012.03.067
|
[4] |
BRAUER V S, REZENDE C P, PESSONI A M, et al. Antifungal agents in agriculture: Friends and foes of public health [J]. Biomolecules, 2019, 9(10): 521. doi: 10.3390/biom9100521
|
[5] |
KLEINKAUF N, VERWEIJ P E, ARENDRUP M C, et al. Risk assessment on the impact of environmental usage of triazoles on the development and spread of resistance to medical triazoles in Aspergillus species. Stockholm: ECDC; 2013 [R]. European Centre for Disease Prevention and Control Technical Report, 2013 Stockholm: ECDC, 2013: 8-13.
|
[6] |
ROCCHI S, REBOUX G, MILLON L. Résistance Aux antifongiques azolés d’origine environnementale: Quelles alternatives pour l’avenir ? [J]. Journal De Mycologie Médicale, 2015, 25(4): 249-256.
|
[7] |
SHARMA A, KUMAR V, SHAHZAD B, et al. Worldwide pesticide usage and its impacts on ecosystem [J]. SN Applied Sciences, 2019, 1(11): 1446. doi: 10.1007/s42452-019-1485-1
|
[8] |
PRICE C L, PARKER J E, WARRILOW A G, et al. Azole fungicides - understanding resistance mechanisms in agricultural fungal pathogens [J]. Pest Management Science, 2015, 71(8): 1054-1058. doi: 10.1002/ps.4029
|
[9] |
LINHART C, PANZACCHI S, BELPOGGI F, et al. Year-round pesticide contamination of public sites near intensively managed agricultural areas in South Tyrol [J]. Environmental Sciences Europe, 2021, 33(1): 1-12. doi: 10.1186/s12302-020-00446-y
|
[10] |
BARBIERI M V. Pesticides in the environment: analysis, occurrence, impact and recommendations for their attenuation [D]. Barcelona: University of Barcelona, 2021.13-18.
|
[11] |
LETZEL M, METZNER G, LETZEL T. Exposure assessment of the pharmaceutical diclofenac based on long-term measurements of the aquatic input [J]. Environment International, 2009, 35(2): 363-368. doi: 10.1016/j.envint.2008.09.002
|
[12] |
GARCÍA-VALCÁRCEL A I, TADEO J L. Influence of moisture on the availability and persistence of clotrimazole and fluconazole in sludge-amended soil [J]. Environmental Toxicology and Chemistry, 2012, 31(3): 501-507. doi: 10.1002/etc.1711
|
[13] |
FROMTLING R A. Overview of medically important antifungal azole derivatives [J]. Clinical Microbiology Reviews, 1988, 1(2): 187-217. doi: 10.1128/CMR.1.2.187
|
[14] |
AZEVEDO M M, FARIA-RAMOS I, CRUZ L C, et al. Genesis of azole antifungal resistance from agriculture to clinical settings [J]. Journal of Agricultural and Food Chemistry, 2015, 63(34): 7463-7468. doi: 10.1021/acs.jafc.5b02728
|
[15] |
CREUSOT N, CASADO-MARTINEZ C, CHIAIA-HERNANDEZ A, et al. Retrospective screening of high-resolution mass spectrometry archived digital samples can improve environmental risk assessment of emerging contaminants: A case study on antifungal azoles [J]. Environment International, 2020, 139: 105708. doi: 10.1016/j.envint.2020.105708
|
[16] |
CHIAIA-HERNÁNDEZ A C, SCHERINGER M, MÜLLER A, et al. Target and suspect screening analysis reveals persistent emerging organic contaminants in soils and sediments [J]. Science of the Total Environment, 2020, 740: 140181. doi: 10.1016/j.scitotenv.2020.140181
|
[17] |
CHEN Z F, YING G G, MA Y B, et al. Typical azole biocides in biosolid-amended soils and plants following biosolid applications [J]. Journal of Agricultural and Food Chemistry, 2013, 61(26): 6198-6206. doi: 10.1021/jf4013949
|
[18] |
SUBBIAH S, RAMESH M, ASHOKAN A P, et al. Acute and sublethal toxicity of an azole fungicide tebuconazole on ionic regulation and Na+/K+-ATPase activity in a freshwater fish Cirrhinus mrigala [J] International Journal of Fisheries and Aquatic Studies 2020; 8(3): 361-371.
|
[19] |
ASSRESS H A, NYONI H, MAMBA B B, et al. Occurrence and risk assessment of azole antifungal drugs in water and wastewater [J]. Ecotoxicology and Environmental Safety, 2020, 187: 109868. doi: 10.1016/j.ecoenv.2019.109868
|
[20] |
黄秋鑫, 王志方, 王春维, 等. 珠江三角洲城市污水及其接纳水体中唑类抗真菌药物的手性特征[C]//2015年中国环境科学学会学术年会论文集. 深圳, 2015: 930-939.
HUANG Q X, WANG Z F, WANG C W, et al. Chiral characteristics of azole antifungal drugs in urban sewage and receiving waters in the Pearl River Delta[C]//. Proceedings of the 2015 Annual Conference of the Chinese Society for Environmental Sciences. Shenzhen, 2015: 930-939 ( in Chinese).
|
[21] |
GENERAL C. Test No. 201: Freshwater alga and cyanobacteria, growth inhibition test [J]. OECD Guidelines for the Testing of Chemicals, 2006, 1(2): 1-1.
|
[22] |
BARAHOEI M, HATAMIPOUR M S, AFSHARZADEH S. Direct brackish water desalination using Chlorella vulgaris microalgae [J]. Process Safety and Environmental Protection, 2021, 148: 237-248. doi: 10.1016/j.psep.2020.10.006
|
[23] |
ZHONG X Q, ZHU Y L, WANG Y J, et al. Effects of three antibiotics on growth and antioxidant response of Chlorella pyrenoidosa and Anabaena cylindrica [J]. Ecotoxicology and Environmental Safety, 2021, 211: 111954. doi: 10.1016/j.ecoenv.2021.111954
|
[24] |
刘树深, 张瑾, 张亚辉, 等. APTox: 化学混合物毒性评估与预测 [J]. 化学学报, 2012, 70(14): 1511-1517. doi: 10.6023/A12050175
LIU S S, ZHANG J, ZHANG Y H, et al. APTox: assessment and prediction on toxicity of chemical mixtures [J]. Acta Chimica Sinica, 2012, 70(14): 1511-1517(in Chinese). doi: 10.6023/A12050175
|
[25] |
WANG X, HUANG J. Principles and techniques of plant physiological biochemical experiment [M]. Beijing: Higher Education Pres, 2006 . 260-267.
|
[26] |
TAN S, HU X L, YIN P H, et al. Photosynthetic inhibition and oxidative stress to the toxic Phaeocystis globosa caused by a diketopiperazine isolated from products of algicidal bacterium metabolism [J]. Journal of Microbiology, 2016, 54(5): 364-375. doi: 10.1007/s12275-016-6012-0
|
[27] |
HUO D, SUN L N, RU X S, et al. Impact of hypoxia stress on the physiological responses of sea cucumber Apostichopus japonicus: Respiration, digestion, immunity and oxidative damage [J]. PeerJ, 2018, 6: e4651. doi: 10.7717/peerj.4651
|
[28] |
BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976, 72(1/2): 248-254.
|
[29] |
WANG F, WANG B, QU H, et al. The influence of nanoplastics on the toxic effects, bioaccumulation, biodegradation and enantioselectivity of ibuprofen in freshwater algae Chlorella pyrenoidosa [J]. Environmental Pollution, 2020, 263: 114593. doi: 10.1016/j.envpol.2020.114593
|
[30] |
KNAUERT S, KNAUER K. The role of reactive oxygen species in copper toxicity to two freshwater green algae(1) [J]. Journal of Phycology, 2008, 44(2): 311-319. doi: 10.1111/j.1529-8817.2008.00471.x
|
[31] |
NONG Q Y, LIU Y A, QIN L T, et al. Toxic mechanism of three azole fungicides and their mixture to green alga Chlorella pyrenoidosa [J]. Chemosphere, 2021, 262: 127793. doi: 10.1016/j.chemosphere.2020.127793
|
[32] |
SALADIN G, MAGNÉ C, CLÉMENT C. Effects of fludioxonil and pyrimethanil, two fungicides used against Botrytis cinerea, on carbohydrate physiology in Vitis vinifera L [J]. Pest Management Science, 2003, 59(10): 1083-1092. doi: 10.1002/ps.733
|
[33] |
XI J J, SHAO J, WANG Y, et al. Acute toxicity of triflumizole to freshwater green algae Chlorella vulgaris [J]. Pesticide Biochemistry and Physiology, 2019, 158: 135-142. doi: 10.1016/j.pestbp.2019.05.002
|
[34] |
LIU R, DENG Y, ZHANG W J, et al. Enantioselective mechanism of toxic effects of triticonazole against Chlorella pyrenoidosa [J]. Ecotoxicology and Environmental Safety, 2019, 185: 109691. doi: 10.1016/j.ecoenv.2019.109691
|
[35] |
ARTIGAS J, PASCAULT N, BOUCHEZ A, et al. Comparative sensitivity to the fungicide tebuconazole of biofilm and plankton microbial communities in freshwater ecosystems [J]. Science of the Total Environment, 2014, 468/469: 326-336. doi: 10.1016/j.scitotenv.2013.08.074
|
[36] |
ZHOU W X, DEBNATH A, JENNINGS G, et al. Enzymatic chokepoints and synergistic drug targets in the sterol biosynthesis pathway of Naegleria fowleri [J]. PLoS Pathogens, 2018, 14(9): e1007245. doi: 10.1371/journal.ppat.1007245
|
[37] |
COLODETE C M, RUAS K F, BARBIRATO J, et al. Biochemistry characterization of proteins defense against oxidative stress in plants and their biosynthetic pathways of secondary metabolites [J] Natureza on line, 2015, 13: 195-204.
|
[38] |
LIU L, ZHU B, WANG G X. Azoxystrobin-induced excessive reactive oxygen species (ROS) production and inhibition of photosynthesis in the unicellular green algae Chlorella vulgaris [J]. Environmental Science and Pollution Research, 2015, 22(10): 7766-7775. doi: 10.1007/s11356-015-4121-7
|
[39] |
NEMAT ALLA M M, HASSAN N M. Changes of antioxidants levels in two maize lines following atrazine treatments [J]. Plant Physiology and Biochemistry, 2006, 44(4): 202-210. doi: 10.1016/j.plaphy.2006.05.004
|
[40] |
LI F M, LIANG Z, ZHENG X, et al. Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production [J]. Aquatic Toxicology, 2015, 158: 1-13. doi: 10.1016/j.aquatox.2014.10.014
|
[41] |
ZHANG W J, CHENG C, CHEN L, et al. Enantioselective toxic effects of cyproconazole enantiomers against Chlorella pyrenoidosa [J]. Chemosphere, 2016, 159: 50-57. doi: 10.1016/j.chemosphere.2016.05.073
|
[42] |
KURT O, ÖZDAL-KURT F, AKÇORA C, et al. Neurotoxic, cytotoxic, apoptotic and antiproliferative effects of some marine algae extracts on the NA2B cell line [J]. Biotechnic & Histochemistry, 2018, 93(1): 59-69.
|
[43] |
WU Y, WANG Y J, LI Y W, et al. Effects of single-walled carbon nanotubes on growth and physiological characteristics of Microcystis aeruginosa [J]. Journal of Central South University, 2018, 25(7): 1628-1641. doi: 10.1007/s11771-018-3855-z
|
[44] |
农琼媛, 覃礼堂, 莫凌云, 等. 抗生素与三唑类杀菌剂混合物对羊角月牙藻的长期毒性相互作用研究 [J]. 生态毒理学报, 2019, 14(4): 140-149.
NONG Q Y, QIN L T, MO L Y, et al. The toxic interactions of long-term effects involving antibiotics and triazole fungicides on Selenastrum capricornutum [J]. Asian Journal of Ecotoxicology, 2019, 14(4): 140-149(in Chinese).
|