[1] |
冯新斌, 陈玖斌, 付学吾, 等. 汞的环境地球化学研究进展 [J]. 矿物岩石地球化学通报, 2013, 32(5): 504-530.
FENG X B, CHEN J B, FU X W, et al. Progresses on environmental geochemistry of mercury [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(5): 504-530(in Chinese).
|
[2] |
HOLMES C D, JACOB D J, CORBITT E S, et al. Global atmospheric model for mercury including oxidation by bromine atoms [J]. Atmospheric Chemistry and Physics, 2010, 10(24): 12037-12057. doi: 10.5194/acp-10-12037-2010
|
[3] |
UNEP. Global mercury assessment [R], 2018.
|
[4] |
MEILI M. The coupling of mercury and organic matter in the biogeochemical cycle-Towards a mechanistic model for the boreal forest zone [J]. Water, Air, and Soil Pollution, 1991, 56: 333-347. doi: 10.1007/BF00342281
|
[5] |
SUN Z H, XIE X D, WANG P, et al. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China [J]. Science of the Total Environment, 2018, 639: 217-227. doi: 10.1016/j.scitotenv.2018.05.176
|
[6] |
刘雅妮, 张习敏, 徐小蓉, 等. 贵州主要汞矿废弃地带的植物及其对汞的富集能力 [J]. 贵州农业科学, 2014, 42(11): 248-250. doi: 10.3969/j.issn.1001-3601.2014.11.061
LIU Y N, ZHANG X M, XU X R, et al. Plant species in main abandoned mercury mines and their enrichment capacity of mercury in Guizhou [J]. Guizhou Agricultural Sciences, 2014, 42(11): 248-250(in Chinese). doi: 10.3969/j.issn.1001-3601.2014.11.061
|
[7] |
钱晓莉, 徐晓航, 吴永贵, 等. 贵州万山汞矿废弃地自然定居植物对汞与甲基汞的吸收与累积 [J]. 生态学杂志, 2019, 38(2): 558-566. doi: 10.13292/j.1000-4890.201902.001
QIAN X L, XU X H, WU Y G, et al. Distribution of inorganic mercury and methylmercury in wild plants inhabited on abandoned lands of Wanshan Hg mining region, Guizhou Province [J]. Chinese Journal of Ecology, 2019, 38(2): 558-566(in Chinese). doi: 10.13292/j.1000-4890.201902.001
|
[8] |
赵甲亭, 李云云, 高愈希, 等. 贵州万山汞矿地区耐汞野生植物研究 [J]. 生态毒理学报, 2014, 9(5): 881-887.
ZHANG J T, LI Y Y, GAO Y X, et al. Study of mercury resistant wild plants growing in the mercury mine area of Wanshan district, Guizhou Province [J]. Asian Journal of Ecotoxicology, 2014, 9(5): 881-887(in Chinese).
|
[9] |
QIAN X L, WU Y G, ZHOU H Y, et al. Total mercury and methylmercury accumulation in wild plants grown at wastelands composed of mine tailings: Insights into potential candidates for phytoremediation [J]. Environmental Pollution, 2018, 239: 757-767. doi: 10.1016/j.envpol.2018.04.105
|
[10] |
MENG B, LI Y, CUI W, et al. Tracing the uptake, transport, and fate of mercury in sawgrass (Cladium jamaicense) in the Florida Everglades using a multi-isotope technique [J]. Environmental Science & Technology, 2018, 52(6): 3384-3391.
|
[11] |
LOUIS V L. ST, RUDD J W. M, J, KELLY C A, et al. Importance of the forest canopy to fluxes of methyl mercury and total mercury to boreal ecosystems [J]. Environmental Science & Technology, 2001, 35(15): 3089-3098.
|
[12] |
STAMENKOVIC J, GUSTIN M S. Nonstomatal versus stomatal uptake of atmospheric mercury [J]. Environmental Science & Technology, 2009, 43(5): 1367-1372.
|
[13] |
FU X B, ZHU W, ZHANG H, et al. Depletion of atmospheric gaseous elemental mercury by plant uptake at Mt. Changbai, Northeast China [J]. Atmospheric Chemistry and Physics, 2016, 16(20): 12861-12873. doi: 10.5194/acp-16-12861-2016
|
[14] |
WANG X, BAO Z D, LIN C J, et al. Assessment of global mercury deposition through litterfall [J]. Environmental Science & Technology, 2016, 50(16): 8548-8557.
|
[15] |
ZHOU J, FENG X B, LIU H Y, et al. Examination of total mercury inputs by precipitation and litterfall in a remote upland forest of Southwestern China [J]. Atmospheric Environment, 2013, 81: 364-372. doi: 10.1016/j.atmosenv.2013.09.010
|
[16] |
WANG Z W, ZHANG X S, XIAO J S, et al. Mercury fluxes and pools in three subtropical forested catchments, Southwest China [J]. Environmental Pollution, 2009, 157(3): 801-808. doi: 10.1016/j.envpol.2008.11.018
|
[17] |
成杭新, 李括, 李敏, 等. 中国城市土壤化学元素的背景值与基准值 [J]. 地学前缘, 2014, 21(3): 265-306. doi: 10.13745/j.esf.2014.03.028
CHENG H X, LI K, LI M, et al. Geochemical background and baseline value of chemical elements in urban soil in China [J]. Earth Science Frontiers, 2014, 21(3): 265-306(in Chinese). doi: 10.13745/j.esf.2014.03.028
|
[18] |
高令健, 毛康, 张伟, 等. 贵州万山汞矿区稻田土壤汞的分布及污染特征 [J]. 矿物岩石地球化学通报, 2021, 40(1): 148-154. doi: 10.19658/j.issn.1007-2802.2020.39.087
GAO L J, MAO K, ZHANG W, et al. Temporal and spatial distribution and pollution characteristics of mercury in paddy soils of the Wanshan mercury mining area, Guizhou Province [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(1): 148-154(in Chinese). doi: 10.19658/j.issn.1007-2802.2020.39.087
|
[19] |
尹德良, 何天容, 安艳玲, 等. 万山稻米汞含量分布特征及影响因素研究 [J]. 农业环境科学学报, 2014, 33(6): 1082-1088. doi: 10.11654/jaes.2014.06.004
YIN D L, HE T R, AN Y L, et al. Distribution and influencing factors of mercury in rice grains in Wanshan [J]. Journal of Agro-Environment Science, 2014, 33(6): 1082-1088(in Chinese). doi: 10.11654/jaes.2014.06.004
|
[20] |
朱宗强. 喀斯特地区汞污染土壤生物有效态分析方法及修复技术研究 [D]. 北京: 中国科学院大学, 2018.
ZHU Z Q. Study on bioavailability analysis method and remediation technology of mercury contaminated soil in Karst area [D]. Beijing: University of Chinese Academy of Sciences, 2018 (in Chinese).
|
[21] |
BIESTER H, GOSAR M, COVELI S. Mercury speciation in sediments affected by dumped mining residues in the drainage area of the Idrija mercury mine, Slovenia [J]. Environmental Science & Technology, 2000, 34(16): 3330-3336.
|
[22] |
BIESTER H, GOSAR M, Müller G. Mercury speciation in tailings of the Idrija mercury mine [J]. Journal of Geochemical Exploration, 1999, 65: 195-204. doi: 10.1016/S0375-6742(99)00027-8
|
[23] |
梁丽, 王永敏, 李先源, 等. 三峡水库消落带植物汞的分布特征 [J]. 环境科学, 2015, 36(11): 4103-4111. doi: 10.13227/j.hjkx.2015.11.021
LIANG L, WANG Y M, LI X Y, et al. Distribution of mercury in plants at water-level-fluctuating zone in the Three Gorges Reservoir [J]. Environment Science, 2015, 36(11): 4103-4111(in Chinese). doi: 10.13227/j.hjkx.2015.11.021
|
[24] |
吴飞, 王训, 罗辑, 等. 青藏高原林线森林汞的空间分布格局及对大气环境汞污染的指示 [J]. 环境化学, 2019, 38(7): 1619-1627. doi: 10.7524/j.issn.0254-6108.2018092302
WU F, WANG X, LUO J, et al. Spatial distribution of total mercury in timberline forest of Tibetan plateau regions and its implications of atmospheric mercury pollution [J]. Environment Chemistry, 2019, 38(7): 1619-1627(in Chinese). doi: 10.7524/j.issn.0254-6108.2018092302
|
[25] |
BISHOP K H, LI Y H, MUNTHE J, et al. Xylem sap as a pathway for total mercury and methylmercury transport from soils to tree canopy in the boreal forest [J]. Biogeochemistry, 1998, 40: 101-113. doi: 10.1023/A:1005983932240
|
[26] |
CANáRIO J, POISSANT L, PILOTE M, et al. Salt-marsh plants as potential sources of Hg0 into the atmosphere [J]. Atmospheric Environment, 2017: 458-464.
|
[27] |
ROTHENBERG S E, FENG X B, DONG B, et al. Characterization of mercury species in brown and white rice (Oryza sativa L. ) grown in water-saving paddies [J]. Environmental Pollution, 2011, 159: 1283-1289. doi: 10.1016/j.envpol.2011.01.027
|
[28] |
ZENK M H. Heavy metal detoxification in higher plants [J]. Gene, 1996, 179: 21-30. doi: 10.1016/S0378-1119(96)00422-2
|
[29] |
WEIS J S, WEIS P. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration [J]. Environment International, 2004, 30: 685-700. doi: 10.1016/j.envint.2003.11.002
|
[30] |
YIN R S, FENG X B, MENG B. Stable mercury isotope variation in rice plants (Oryza sativa L. ) from the Wanshan mercury mining district, SW China [J]. Environmental Science & Technology, 2013, 47(5): 2238-2245.
|
[31] |
MAO Y X, LI Y B, RICHARDS J, et al. Investigating uptake and translocation of mercury species by sawgrass (Cladium jamaicense) using a stable isotope tracer technique [J]. Environmental Science & Technology, 2013, 47(17): 9678-9684.
|
[32] |
LAACOURI A, NATER E A, KOLKA R K. Distribution and uptake dynamics of mercury in leaves of common deciduous tree species in Minnesota, USA [J]. Environmental Science & Technology, 2013, 47(18): 10462-10470.
|
[33] |
POISSANT L, PILOTE M, YUMVIHOZE E, et al. Mercury concentrations and foliage/atmosphere fluxes in a maple forest ecosystem in Quebec, Canada [J]. Journal of Geophysical Research-Atmospheres, 2008, 113(D10307).
|
[34] |
王少锋, 冯新斌, 仇广乐, 等. 万山汞矿区地表与大气界面间汞交换通量研究 [J]. 环境科学, 2006, 27(8): 1478-1494. doi: 10.3321/j.issn:0250-3301.2006.08.003
WANG S F, FENG X B, QIU G L, et al. Mercury exchange fluxes between air and soil interface over different type of land in Wanshan Hg mine area [J]. Environment Science, 2006, 27(8): 1478-1494(in Chinese). doi: 10.3321/j.issn:0250-3301.2006.08.003
|
[35] |
黄银晓, 林舜华, 姚依群, 等. 植物对汞的吸收和反应 [J]. 植物学通报, 1983, 1: 47-52.
HUANG X Y, LIN S H, YAO Y Q, et al. Plant uptake and response to mercury [J]. Chinese Bulletin of Botany, 1983, 1: 47-52(in Chinese).
|
[36] |
徐小蓉. 万山汞矿区耐汞植物筛选及耐性机理研究 [D]. 贵阳: 贵州师范大学, 2008.
XU X R. The selection of Hg-tolerance plants and the study of the tolerance mechanisms in the Wanshan mine [D]. Guiyang: Guizhou Normal University, 2008 (in Chinese).
|
[37] |
杨世勇, 谢建春, 刘登义. 铜陵铜尾矿复垦现状及植物在铜尾矿上的定居 [J]. 长江流域资源与环境, 2004, 13(5): 488-493. doi: 10.3969/j.issn.1004-8227.2004.05.017
YANG S Y, XIE J C, LIU D Y. Reclamation status of copper tailings in Tongling and the settlement of plants on copper tailings [J]. Resources and Environment in the Yangtze Basin, 2004, 13(5): 488-493(in Chinese). doi: 10.3969/j.issn.1004-8227.2004.05.017
|