[1] |
XU L, HU Y, ZHU Q, et al. Several typical endocrine-disrupting chemicals in human urine from general population in China: Regional and demographic-related differences in exposure risk[J]. Journal of Hazardous Materials, 2022, 424: 127489. doi: 10.1016/j.jhazmat.2021.127489
|
[2] |
WANG Q, XU Z, JIANG Y, et al. Efficient peroxymonosulfate activation and less metallic leaching through kaolin@MnCo2O4 for bisphenol A degradation in environmental remediation[J]. Applied Surface Science, 2022, 585: 152705. doi: 10.1016/j.apsusc.2022.152705
|
[3] |
LU J, WU J, ZHANG C, et al. Possible effect of submarine groundwater discharge on the pollution of coastal water: Occurrence, source, and risks of endocrine disrupting chemicals in coastal groundwater and adjacent seawater influenced by reclaimed water irrigation[J]. Chemosphere, 2020, 250: 126323. doi: 10.1016/j.chemosphere.2020.126323
|
[4] |
陈虎, 念东, 甘一萍, 等. 北京市再生水与地表水中的内分泌干扰物分析[J]. 环境科学与技术, 2014, 37(S2): 352-356.
|
[5] |
MA Y, LIU H, WU J, et al. The adverse health effects of bisphenol A and related toxicity mechanisms[J]. Environmental Research, 2019, 176: 108575. doi: 10.1016/j.envres.2019.108575
|
[6] |
王燚凡, 佘少桦, 孙传智, 等. 超薄硫掺杂石墨相氮化碳纳米片光催化降解双酚A[J]. 环境科学研究, 2021, 34(12): 2859-2866. doi: 10.13198/j.issn.1001-6929.2021.09.23
|
[7] |
KUMAR S, KAUSHIK R D, PUROHIT L P. ZnO-CdO nanocomposites incorporated with graphene oxide nanosheets for efficient photocatalytic degradation of bisphenol A, thymol blue and ciprofloxacin[J]. Journal of Hazardous Materials, 2022, 424: 127332. doi: 10.1016/j.jhazmat.2021.127332
|
[8] |
WANG Y, YANG H, YUN H, et al. Crystallization time-induced microstructural evolution and photoelectrochemical properties of ternary Ag@AgBr/TiO2 nanorod arrays[J]. Journal of Alloys and Compounds, 2022, 904: 163370. doi: 10.1016/j.jallcom.2021.163370
|
[9] |
DAO T B T, HA T T L, DO NGUYEN T, et al. Effectiveness of photocatalysis of MMT-supported TiO2 and TiO2 nanotubes for rhodamine B degradation[J]. Chemosphere, 2021, 280: 130802. doi: 10.1016/j.chemosphere.2021.130802
|
[10] |
AYDıN E B, SığıRCıK G. Preparations of different ZnO nanostructures on TiO2 nanotube via electrochemical method and its application in hydrogen production[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11488-11502. doi: 10.1016/j.ijhydene.2019.03.123
|
[11] |
MA B, YU N, XIN S, et al. Photoelectrocatalytic degradation of p-chloronitrobenzene by g-C3N4/TiO2 nanotube arrays photoelectrodes under visible light irradiation[J]. Chemosphere, 2021, 267: 129242. doi: 10.1016/j.chemosphere.2020.129242
|
[12] |
ZHAO Y, LI Z, WEI J, et al. Efficient photodegradation of cefixime catalyzed by a direct Z-scheme CQDs-BiOBr/CN composite: Performance, toxicity evaluation and photocatalytic mechanism[J]. Chemosphere, 2022, 292: 133430. doi: 10.1016/j.chemosphere.2021.133430
|
[13] |
LI S, MA Q, CHEN L, et al. Hydrochar-mediated photocatalyst Fe3O4/BiOBr@HC for highly efficient carbamazepine degradation under visible LED light irradiation[J]. Chemical Engineering Journal, 2022, 433: 134492. doi: 10.1016/j.cej.2021.134492
|
[14] |
王磊, 康凯, 韩浩, 等. 新型氯化改性BiOBr/TiO2的可见光催化活性[J]. 水处理技术, 2022, 48(3): 70-73.
|
[15] |
RASHID J, ABBAS A, CHANG L C, et al. Butterfly cluster like lamellar BiOBr/TiO2 nanocomposite for enhanced sunlight photocatalytic mineralization of aqueous ciprofloxacin[J]. Science of the Total Environment, 2019, 665: 668-677.
|
[16] |
HAN L, LI B, WEN H, et al. Photocatalytic degradation of mixed pollutants in aqueous wastewater using mesoporous 2D/2D TiO2 (B)-BiOBr heterojunction[J]. Journal of Materials Science & Technology, 2021, 70: 176-184.
|
[17] |
MA B, XIN S, XIN Y, et al. Optimized fabrication of BiOBr/TiO2 nanotube arrays for efficient degradation of organic pollutant under visible light irradiation[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 104833.
|
[18] |
MA B, XIN S, XIN Y, et al. Visible-light-driven photoelectrocatalytic degradation of p-chloronitrobenzene by BiOBr/TiO2 nanotube arrays photoelectrodes: mechanisms, degradation pathway and DFT calculation[J]. Separation and Purification Technology, 2021, 268: 118699.
|
[19] |
张家晶, 郑永杰, 荆涛, 等. 3D花状MoS2/O-g-C3N4Z型异质结增强光催化剂降解BPA[J]. 复合材料学报, 2021, 39: 1-14.
|
[20] |
QU J, SUN X, YANG C, et al. Novel p-n type polyimide aerogels/BiOBr heterojunction for visible light activated high efficient photocatalytic degradation of organic contaminants[J]. Journal of Alloys and Compounds, 2022, 900: 163469. doi: 10.1016/j.jallcom.2021.163469
|
[21] |
YANG J, ZHOU H, CHEN C, et al. Design of hollow mesoporous TiO2@BiOBr/Bi4O5Br2 type-II/Z-scheme tandem heterojunctions under confinement effect: Improved space charge separation and enhanced visible-light photocatalytic performance[J]. Journal of Colloid and Interface Science, 2022, 617: 341-352. doi: 10.1016/j.jcis.2022.03.026
|
[22] |
ZHAO S, HOU C, SHAO L, et al. Adsorption and in-situ photocatalytic synergy degradation of 2, 4-dichlorophenol by three-dimensional graphene hydrogel modified with highly dispersed TiO2 nanoparticles[J]. Applied Surface Science, 2022, 590: 153088.
|
[23] |
QI L, CHENG B, YU J, et al. High-surface area mesoporous Pt/TiO2 hollow chains for efficient formaldehyde decomposition at ambient temperature[J]. Journal of Hazardous Materials, 2016, 301: 522-530. doi: 10.1016/j.jhazmat.2015.09.026
|
[24] |
HU X, LI C, SONG J, et al. Multidimensional assembly of oxygen vacancy-rich amorphous TiO2-BiOBr-sepiolite composite for rapid elimination of formaldehyde and oxytetracycline under visible light[J]. Journal of Colloid and Interface Science, 2020, 574: 61-73. doi: 10.1016/j.jcis.2020.04.035
|
[25] |
WANG K, ZHANG Y, LIU L, et al. BiOBr nanosheets-decorated TiO2 nanofibers as hierarchical p-n heterojunctions photocatalysts for pollutant degradation[J]. Journal of Materials Science, 2019, 54(11): 8426-8435. doi: 10.1007/s10853-019-03466-z
|
[26] |
WEI X X, CHEN C M, GUO S Q, et al. Advanced visible-light-driven photocatalyst BiOBr-TiO2-graphene composite with graphene as a nano-filler[J]. Journal of Materials Chemistry A, 2014, 2(13): 4667-4675. doi: 10.1039/c3ta14349j
|
[27] |
MA B, XIN S, MA X, et al. Preparation of ternary reduced graphene oxide/BiOBr/TiO2 nanotube arrays for photoelectrocatalytic degradation of p-chloronitrobenzene under visible light irradiation[J]. Applied Surface Science, 2021, 551: 149480. doi: 10.1016/j.apsusc.2021.149480
|
[28] |
TAN Y, Li C, SUN Z, et al. Ternary structural assembly of BiOCl/TiO2/clinoptilolite composite: study of coupled mechanism and photocatalytic performance[J]. Journal of Colloid and Interface Science, 2020, 564: 143-154. doi: 10.1016/j.jcis.2019.12.116
|
[29] |
XUE C, ZHANG T, DING S, et al. Anchoring tailored low-index faceted BiOBr nanoplates onto TiO2 nanorods to enhance the stability and visible-light-driven catalytic activity[J]. ACS Applied Materials & Interfaces, 2017, 9(19): 16091-16102.
|
[30] |
LU L, JIANG T, JING W, et al. A visible light responsive photocatalytic fuel cell using BiOBr/TiO2 nanotube array photoanode for simultaneous wastewater treatment and electricity generation[J]. Chemistry Letters, 2018, 47(5): 613-616. doi: 10.1246/cl.180080
|
[31] |
张清哲, 辛言君, 马东, 等. 无机离子对石墨烯/TiO2纳米管阵列光电极光催化性能影响[J]. 环境工程学报, 2014, 8(10): 4239-4243.
|
[32] |
胡明玥, 王玉如, 范家慧, 等. 活化过硫酸盐降解新兴污染物咖啡因[J]. 工业水处理, 2022, 42(1): 100-107.
|
[33] |
ZHAO G, DING J, ZHOU F, et al. Construction of a visible-light-driven magnetic dual Z-scheme BiVO4/g-C3N4/NiFe2O4 photocatalyst for effective removal of ofloxacin: mechanisms and degradation pathway[J]. Chemical Engineering Journal, 2021, 405: 126704. doi: 10.1016/j.cej.2020.126704
|
[34] |
WANG G, CHEN Q, LIU Y, et al. In situ synthesis of graphene/WO3 co-decorated TiO2 nanotube array photoelectrodes with enhanced photocatalytic activity and degradation mechanism for dimethyl phthalate[J]. Chemical Engineering Journal, 2018, 337: 322-332. doi: 10.1016/j.cej.2017.12.058
|
[35] |
XIN Y, GAO M, WANG Y, et al. Photoelectrocatalytic degradation of 4-nonylphenol in water with WO3/TiO2 nanotube array photoelectrodes[J]. Chemical Engineering Journal, 2014, 242: 162-169. doi: 10.1016/j.cej.2013.12.068
|
[36] |
冯宝瑞, 刘海成, 李阳, 等. Fe3O4@SiO2@TiO2-AC光催化降解水源水中腐殖酸[J]. 工业水处理, 2020(8): 55-59.
|
[37] |
UYGUNER-DEMIREL C S, BIRBEN N C, BEKBOLET M. Elucidation of background organic matter matrix effect on photocatalytic treatment of contaminants using TiO2: A review[J]. Catalysis Today, 2017, 284: 202-214. doi: 10.1016/j.cattod.2016.12.030
|
[38] |
ZHAO J, ZHAO Z, LI N, et al. Visible-light-driven photocatalytic degradation of ciprofloxacin by a ternary Mn2O3/Mn3O4/MnO2 valence state heterojunction[J]. Chemical Engineering Journal, 2018, 353: 805-813. doi: 10.1016/j.cej.2018.07.163
|
[39] |
曹婷婷. Co(Ⅱ)-BiOCl@生物炭光催化降解酚类污染物的效能及机制[D]. 哈尔滨工业大学, 2021.
|
[40] |
BAI X, ZHANG X, HUA Z, et al. Uniformly distributed anatase TiO2 nanoparticles on graphene: Synthesis, characterization, and photocatalytic application[J]. Journal of Alloys and Compounds, 2014, 599: 10-18. doi: 10.1016/j.jallcom.2014.02.049
|
[41] |
HEPEL M, LUO J. Photoelectrochemical mineralization of textile diazo dye pollutants using nanocrystalline WO3 electrodes[J]. Electrochimica Acta, 2001, 47(5): 729-740. doi: 10.1016/S0013-4686(01)00753-8
|
[42] |
李瑞. BiOCl纳米片-TiO2纳米管阵列复合材料的制备及光催化性能的研究[D]. 南昌: 南昌大学, 2021.
|