[1] |
林靖钧, 李瑞雪, 林华, 等. 我国水产养殖水体中抗生素的污染特征[J]. 净水技术, 2022, 41(3): 12-19. doi: 10.15890/j.cnki.jsjs.2022.03.002
|
[2] |
张焕军, 王席席, 李轶. 水体中抗生素污染现状及其对氮转化过程的影响研究进展[J]. 环境化学, 2022: 1-14. doi: 10.7524/j.issn.0254-6108.2021091902
|
[3] |
李佳琳, 巨龙, 崔梦, 等. 磺胺类抗生素的污染现状与去除技术研究进展[J]. 安徽农业科学, 2021, 49(21): 27-32. doi: 10.3969/j.issn.0517-6611.2021.21.007
|
[4] |
黄智奔, 陈菊香, 包丽丽, 等. 水中磺胺甲噁唑去除技术的研究进展[J]. 资源节约与环保, 2022(1): 70-73. doi: 10.3969/j.issn.1673-2251.2022.01.020
|
[5] |
TIAN Y S, ZHOU M H, PAN Y W, et al. MoS2 as highly efficient co-catalyst enhancing the performance of FeO based electro-Fenton process in degradation of sulfamethazine: Approach and mechanism[J]. Chemical Engineering Journal, 2021, 403: 126361.
|
[6] |
ZHANG H L, XU Z Y, WANG S L, et al. Preparation of a highly-efficient electro-Fenton cathode material for H2O2 generation and its electrochemical performance in COD removal[J]. International Journal of Electrochemical Science, 2020, 15(12): 12462-12474.
|
[7] |
XIA T L, LIN Y C, LI W Z, et al. Photocatalytic degradation of organic pollutants by MOFs based materials: A review[J]. Chinese Chemical Letters, 2021, 32(10): 2975-2984. doi: 10.1016/j.cclet.2021.02.058
|
[8] |
LIU X, ZHOU Y, ZHANG J, et al. Iron containing metal-organic frameworks: Structure, synthesis, and applications in environmental remediation[J]. ACS applied materials & interfaces, 2017, 9(24): 20255-20275.
|
[9] |
SUN Q, LIU M, LI K, et al. Facile synthesis of Fe-containing metal-organic frameworks as highly efficient catalysts for degradation of phenol at neutral pH and ambient temperature[J]. CrystEngComm, 2015, 17(37): 7160-7168. doi: 10.1039/C5CE01375E
|
[10] |
MA M Y, NOEI H, MIENERT B, et al. Iron metal organic frameworks MIL-88B and NH2-MIL-88B for the loading and delivery of the gasotransmitter carbon monoxide[J]. Chemistry:A European Journal, 2013, 19(21): 6785-679. doi: 10.1002/chem.201201743
|
[11] |
王楠楠, 张巍, 修光利. MIL-88B(Fe)非均相芬顿催化降解磺胺甲恶唑[J]. 环境污染与防治, 2020, 42(6): 682-689. doi: 10.15985/j.cnki.1001-3865.2020.06.006
|
[12] |
杨康. MOFs及其复合材料的制备及电化学性能研究[D]. 镇江: 江苏大学, 2020.
|
[13] |
LI X R, HE X B, YIN F X, et al. NH2-MIL-88B-Fe for electrocatalytic N2 fixation to NH3 with high faradaic efficiency under ambient conditions in neutral electrolyte[J]. Journal of Materials Science, 2020, 55(26): 12041-12052. doi: 10.1007/s10853-020-04777-2
|
[14] |
沈意, 许俊杰, 朱超, 等. 缺陷化金属有机骨架材料的合成及其污染控制应用[J]. 科学通报, 2021, 66(23): 2943-2957.
|
[15] |
CAI L F, CHEN J J, CHANG L, et al. Adhesion mechanisms and electrochemical applications of microorganisms onto a GO-NH2 modified carbon felt electrode material[J]. Industrial & Engineering Chemistry Research, 2021, 60(11): 4321-4331.
|
[16] |
SHI L, WANG T, ZHANG H B, et al. An amine-functionalized iron (III) metal-organic framework as efficient visible-light photocatalyst for Cr (VI) reduction[J]. Advanced Science, 2015, 2(3): 1500006.
|
[17] |
YI Q Y, DU M M, SHEN B, et al. Hollow Fe3O4/carbon with surface mesopores derived from MOFs for enhanced lithium storage performance[J]. Science Bulletin, 2020, 65(3): 233-242. doi: 10.1016/j.scib.2019.11.004
|
[18] |
HU X B, LIU B Z, DENG Y H, et al. Adsorption and heterogeneous Fenton degradation of 17α-methyltestosterone on nano Fe3O4/MWCNTs in aqueous solution[J]. Applied Catalysis B:Environmental, 2011, 107(3): 274-283.
|
[19] |
LI X, PI Y, WU L, et al. Facilitation of the visible light-induced Fenton-like excitation of H2O2 via heterojunction of g-C3N4/NH2-Iron terephthalate metal-organic framework for MB degradation[J]. Applied Catalysis B:Environmental, 2017, 202: 653-663. doi: 10.1016/j.apcatb.2016.09.073
|
[20] |
LAURIER K, VERMOORTELE F, AMELOOT R, et al. Iron (III)-based metal-organic frameworks as visible light photocatalysts[J]. Journal of American Chemical Society, 2013, 135(39): 14488-14491. doi: 10.1021/ja405086e
|
[21] |
WANG Y X, ZHONG Z, MUHAMMAD Y, et al. Defect engineering of NH2 -MIL-88B(Fe) using different monodentate ligands for enhancement of photo-Fenton catalytic performance of acetamiprid degradation[J]. Chemical Engineering Journal, 2020, 398: 125684.
|
[22] |
XU B, YANG H, CAI Y, et al. Preparation and photocatalytic property of spindle-like MIL-88B(Fe) nanoparticles[J]. Inorganic Chemistry Communications, 2016, 67: 29-31. doi: 10.1016/j.inoche.2016.03.003
|
[23] |
HE H, WANG Y X, LI J, et al. Confined conductive and light-adsorbed network in metal organic frameworks (MIL-88B(Fe)) with enhanced photo-Fenton catalytic activity for sulfamethoxazole degradation[J]. Chemical Engineering Journal, 2021, 427: 131962.
|
[24] |
王爱民, 曲久辉, 史红星, 等. 活性碳纤维阴极电芬顿反应降解微囊藻毒素研究[J]. 高等学校化学学报, 2005, 26(9): 1669-1672. doi: 10.3321/j.issn:0251-0790.2005.09.013
|
[25] |
ZHAO M C, MAO X D, LI R X, et al. In-situ slow production of Fe2+ to motivate electro-Fenton oxidation of bisphenol A in a flow through dual-anode reactor using current distribution strategy: Advantages, CFD and toxicity assessment[J]. Electrochimica Acta, 2022: 411.
|
[26] |
ZHANG Y, LI G, LU H, et al. Synthesis, characterization and photocatalytic properties of MIL-53(Fe)-graphene hybrid materials[J]. RSC Advances, 2014, 4(15): 7594-7600. doi: 10.1039/c3ra46706f
|
[27] |
LI J H, WANG Y S, CHEN Y C, et al. Metal-organic frameworks toward electrocatalytic applications[J]. Applied Sciences-Basel, 2019, 9(12): 2427. doi: 10.3390/app9122427
|
[28] |
ZHOU J, DOU Y B, WU X Q, et al. Alkali-etched Ni (II)-based metal-organic framework nanosheet arrays for electrocatalytic overall water splitting[J]. SMALL, 2020, 16(41): 1906564. doi: 10.1002/smll.201906564
|
[29] |
谢欣卓, 钟金魁, 李静, 等. 四氧化三铁负载纳米零价铁类Fenton法降解水中磺胺甲恶唑[J/OL]. 中国环境科学: 1-11. DOI: 10.19674/j.cnki.issn1000-6923.20220314.014.
|
[30] |
曾佚浩, 陈运进, 卢耀斌, 等. Cu-Co双金属氢氧化物非均相类芬顿催化剂去除磺胺甲恶唑[J]. 环境工程学报, 2020, 14(9): 2474-2484. doi: 10.12030/j.cjee.202001014
|
[31] |
NGUYEN B, HUANG C P, DOONG R A, et al. Visible-light photodegradation of sulfamethoxazole (SMX) over Ag-P-codoped g-C3N4 (Ag-P@UCN) photocatalyst in water[J]. Chemical Engineering Journal, 2019: 384.
|
[32] |
SHEIJKI S, JEBALBAREZI B, DEHGHANZADEH R, et al. Sulfamethoxazole oxidation in secondary treated effluent using Fe (VI)/PMS and Fe (VI)/H2O2 processes: Experimental parameters, transformation products, reaction pathways and toxicity evaluation[J]. Journal of Environmental Chemical Engineering, 2022, 10(3).
|
[33] |
FU A, LIU Z B, SUN Z R, et al. Cu/Fe oxide integrated on graphite felt for degradation of sulfamethoxazole in the heterogeneous electro-Fenton process under near-neutral conditions[J]. Chemosphere, 2022: 297.
|