[1] |
GUAN Y H, MA J, REN Y M, et al. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals [J]. Water Research, 2013, 47(14): 5431-5438. doi: 10.1016/j.watres.2013.06.023
|
[2] |
GIANNAKIS S, LIN K Y A, GHANBARI F. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs) [J]. Chemical Engineering Journal, 2021, 406: 127083. doi: 10.1016/j.cej.2020.127083
|
[3] |
Nidheesh p v, Raman r. Removal of rhodamine B from a water medium using hydroxyl and sulphate radicals generated by iron loaded activated carbon [J]. RSC Advances, 2016, 6(7): 5330-5340. doi: 10.1039/C5RA19987E
|
[4] |
ESPLUGAS S, GIMÉNEZ J, CONTRERAS S, et al. Comparison of different advanced oxidation processes for phenol degradation [J]. Water Research, 2002, 36(4): 1034-1042. doi: 10.1016/S0043-1354(01)00301-3
|
[5] |
KLAVARIOTI M, MANTZAVINOS D, KASSINOS D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes [J]. Environment International, 2009, 35(2): 402-417. doi: 10.1016/j.envint.2008.07.009
|
[6] |
TROJANOWICZ M. Removal of persistent organic pollutants (POPs) from waters and wastewaters by the use of ionizing radiation [J]. Science of the Total Environment, 2020, 718: 134425. doi: 10.1016/j.scitotenv.2019.134425
|
[7] |
BUTHIYAPPAN A, ABDUL AZIZ A R, WAN DAUD W M A. Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents [J]. Reviews in Chemical Engineering, 2016, 32(1): 1-47. doi: 10.1515/revce-2015-0034
|
[8] |
BICALHO H A, LOPEZ J L, BINATTI I, et al. Facile synthesis of highly dispersed Fe(II)-doped g-C3N4 and its application in Fenton-like catalysis [J]. Molecular Catalysis, 2017, 435: 156-165. doi: 10.1016/j.mcat.2017.04.003
|
[9] |
LIU J Y, XU H, XU Y G, et al. Graphene quantum dots modified mesoporous graphite carbon nitride with significant enhancement of photocatalytic activity [J]. Applied Catalysis B:Environmental, 2017, 207: 429-437. doi: 10.1016/j.apcatb.2017.01.071
|
[10] |
PEI Z X, GU J X, WANG Y K, et al. Component matters: Paving the roadmap toward enhanced electrocatalytic performance of graphitic C 3 N 4-based catalysts via atomic tuning [J]. ACS Nano, 2017, 11(6): 6004-6014. doi: 10.1021/acsnano.7b01908
|
[11] |
WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J]. Nature Materials, 2009, 8(1): 76-80. doi: 10.1038/nmat2317
|
[12] |
BAI X J, WANG L, ZONG R. Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods [J]. The Journal of Physical Chemistry C, 2013, 117(19): 9952-9961. doi: 10.1021/jp402062d
|
[13] |
ZHANG S W, LI J X, WANG X K, et al. Rationally designed 1D Ag@AgVO3 nanowire/graphene/protonated g-C3N4 nanosheet heterojunctions for enhanced photocatalysis via electrostatic self-assembly and photochemical reduction methods [J]. Journal of Materials Chemistry A, 2015, 3(18): 10119-10126. doi: 10.1039/C5TA00635J
|
[14] |
黄建辉, 林文婷, 谢丽燕, 等. 石墨相氮化碳-碘氧化铋层状异质结的构建及其光催化杀菌性能 [J]. 环境科学, 2017, 38(9): 3979-3986. doi: 10.13227/j.hjkx.201702014
HUANG J H, LIN W T, XIE L Y, et al. Construction of graphitic carbon nitride-bismuth oxyiodide layered heterostructures and their photocatalytic antibacterial performance [J]. Environmental Science, 2017, 38(9): 3979-3986(in Chinese). doi: 10.13227/j.hjkx.201702014
|
[15] |
王亦清, 沈少华. 非金属掺杂石墨相氮化碳光催化的研究进展与展望 [J]. 物理化学学报, 2020, 36(3): 106-119. doi: 10.3866/PKU.WHXB201905080
Wang Y Q, Shen S H. Progress and prospects of non-metal doped graphitic carbon nitride for improved photocatalytic performances [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 106-119(in Chinese). doi: 10.3866/PKU.WHXB201905080
|
[16] |
ISMAEL M. A review on graphitic carbon nitride (g-C3N4) based nanocomposites: Synthesis, categories, and their application in photocatalysis [J]. Journal of Alloys and Compounds, 2020, 846: 156446. doi: 10.1016/j.jallcom.2020.156446
|
[17] |
YANG Y, LI X, ZHOU C Y, et al. Recent advances in application of graphitic carbon nitride-based catalysts for degrading organic contaminants in water through advanced oxidation processes beyond photocatalysis: A critical review [J]. Water Research, 2020, 184: 116200. doi: 10.1016/j.watres.2020.116200
|
[18] |
ZHOU Y, GAO Y, PANG S Y, et al. Oxidation of fluoroquinolone antibiotics by peroxymonosulfate without activation: Kinetics, products, and antibacterial deactivation [J]. Water Research, 2018, 145: 210-219. doi: 10.1016/j.watres.2018.08.026
|
[19] |
LIN K Y A, ZHANG Z Y, WI-AFEDZI T. Sulfur-doped carbon nitride as a non-metal heterogeneous catalyst for sulfate radical-based advanced oxidation processes in the absence of light irradiation [J]. Journal of Water Process Engineering, 2018, 24: 83-89. doi: 10.1016/j.jwpe.2018.02.018
|
[20] |
LIN K Y A, ZHANG Z Y. Degradation of Bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst [J]. Chemical Engineering Journal, 2017, 313: 1320-1327. doi: 10.1016/j.cej.2016.11.025
|
[21] |
TAN J, LI Z F, LI J, et al. Visible-light-assisted peroxymonosulfate activation by metal-free bifunctional oxygen-doped graphitic carbon nitride for enhanced degradation of imidacloprid: Role of non-photochemical and photocatalytic activation pathway [J]. Journal of Hazardous Materials, 2022, 423: 127048. doi: 10.1016/j.jhazmat.2021.127048
|
[22] |
TAN J, LI Z F, LI J, et al. Graphitic carbon nitride-based materials in activating persulfate for aqueous organic pollutants degradation: A review on materials design and mechanisms [J]. Chemosphere, 2021, 262: 127675. doi: 10.1016/j.chemosphere.2020.127675
|
[23] |
LIU S Z, LI D G, SUN H Q, et al. Oxygen functional groups in graphitic carbon nitride for enhanced photocatalysis [J]. Journal of Colloid and Interface Science, 2016, 468: 176-182. doi: 10.1016/j.jcis.2016.01.051
|
[24] |
ZHANG P, LI X H, SHAO C L, et al. Hydrothermal synthesis of carbon-rich graphitic carbon nitride nanosheets for photoredox catalysis [J]. Journal of Materials Chemistry A, 2015, 3(7): 3281-3284. doi: 10.1039/C5TA00202H
|
[25] |
LI J H, SHEN B, HONG Z H, et al. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity [J]. Chemical Communications, 2012, 48(98): 12017-12019. doi: 10.1039/c2cc35862j
|
[26] |
ZHANG Y, GONG H H, LI G X, et al. Synthesis of graphitic carbon nitride by heating mixture of urea and thiourea for enhanced photocatalytic H2 production from water under visible light [J]. International Journal of Hydrogen Energy, 2017, 42(1): 143-151. doi: 10.1016/j.ijhydene.2016.11.040
|
[27] |
WANG Y M, CAI H Y, QIAN F F, et al. Facile one-step synthesis of onion-like carbon modified ultrathin g-C3N4 2D nanosheets with enhanced visible-light photocatalytic performance [J]. Journal of Colloid and Interface Science, 2019, 533: 47-58. doi: 10.1016/j.jcis.2018.08.039
|
[28] |
LIU G, NIU P, SUN C H, et al. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4 [J]. Journal of the American Chemical Society, 2010, 132(33): 11642-11648. doi: 10.1021/ja103798k
|
[29] |
YAN J, ZHOU C J, LI P R, et al. Nitrogen-rich graphitic carbon nitride: Controllable nanosheet-like morphology, enhanced visible light absorption and superior photocatalytic performance [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 508: 257-264.
|
[30] |
YAN Q, HUANG G F, LI D F, et al. Facile synthesis and superior photocatalytic and electrocatalytic performances of porous B-doped g-C3N4 nanosheets [J]. Journal of Materials Science & Technology, 2018, 34(12): 2515-2520.
|
[31] |
KOMOROWSKA-DURKA M, DIMITRAKIS G, BOGDAŁ D, et al. A concise review on microwave-assisted polycondensation reactions and curing of polycondensation polymers with focus on the effect of process conditions [J]. Chemical Engineering Journal, 2015, 264: 633-644. doi: 10.1016/j.cej.2014.11.087
|
[32] |
DONG G H, ZHAO K, ZHANG L Z. Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4 [J]. Chemical Communications, 2012, 48(49): 6178-6180. doi: 10.1039/c2cc32181e
|
[33] |
LIU S Z, SUN H Q, ANG H M, et al. Integrated oxygen-doping and dye sensitization of graphitic carbon nitride for enhanced visible light photodegradation [J]. Journal of Colloid and Interface Science, 2016, 476: 193-199. doi: 10.1016/j.jcis.2016.05.026
|
[34] |
WEI F Y, LIU Y, ZHAO H, et al. Oxygen self-doped g-C3N4 with tunable electronic band structure for unprecedentedly enhanced photocatalytic performance [J]. Nanoscale, 2018, 10(9): 4515-4522. doi: 10.1039/C7NR09660G
|
[35] |
LIANG Q, ZHANG M, LIU C H, et al. Sulfur-doped graphitic carbon nitride decorated with zinc phthalocyanines towards highly stable and efficient photocatalysis [J]. Applied Catalysis A:General, 2016, 519: 107-115. doi: 10.1016/j.apcata.2016.03.033
|
[36] |
GONçALVES D A F, ALVIM R P R, BICALHO H A, et al. Highly dispersed Mo-doped graphite carbon nitride: Potential application as oxidation catalyst with hydrogen peroxide [J]. New Journal of Chemistry, 2018, 42(8): 5720-5727. doi: 10.1039/C8NJ00316E
|
[37] |
ZHOU Y J, ZHANG L X, HUANG W M, et al. N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light [J]. Carbon, 2016, 99: 111-117. doi: 10.1016/j.carbon.2015.12.008
|
[38] |
WANG F L, CHEN P, FENG Y P, et al. Facile synthesis of N-doped carbon dots/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of indomethacin [J]. Applied Catalysis B:Environmental, 2017, 207: 103-113. doi: 10.1016/j.apcatb.2017.02.024
|
[39] |
CHAI B, YAN J T, WANG C L, et al. Enhanced visible light photocatalytic degradation of Rhodamine B over phosphorus doped graphitic carbon nitride [J]. Applied Surface Science, 2017, 391: 376-383. doi: 10.1016/j.apsusc.2016.06.180
|
[40] |
CHEN M, BAI R N, JIN P, et al. A facile hydrothermal synthesis of few-layer oxygen-doped g-C3N4 with enhanced visible light-responsive photocatalytic activity [J]. Journal of Alloys and Compounds, 2021, 869: 159292. doi: 10.1016/j.jallcom.2021.159292
|
[41] |
BELLARDITA M, GARCÍA-LÓPEZ E I, MARCÌ G, et al. Selective photocatalytic oxidation of aromatic alcohols in water by using P-doped g-C3N4 [J]. Applied Catalysis B:Environmental, 2018, 220: 222-233. doi: 10.1016/j.apcatb.2017.08.033
|
[42] |
SU C Y, ZHOU Y Z, ZHANG L L, et al. Enhanced n→π* electron transition of porous P-doped g-C3N4 nanosheets for improved photocatalytic H2 evolution performance [J]. Ceramics International, 2020, 46(6): 8444-8451. doi: 10.1016/j.ceramint.2019.12.079
|
[43] |
QI H L, LIU Y N, LI C Y, et al. Precursor-reforming protocol to synthesis of porous N-doped g-C3N4 for highly improved photocatalytic water treatments [J]. Materials Letters, 2020, 264: 127329. doi: 10.1016/j.matlet.2020.127329
|
[44] |
HU S Z, MA L, YOU J G, et al. A simple and efficient method to prepare a phosphorus modified g-C3N4 visible light photocatalyst [J]. RSC Advances, 2014, 4(41): 21657-21663. doi: 10.1039/C4RA02284J
|
[45] |
GUO S E, TANG Y Q, XIE Y, et al. P-doped tubular g-C3N4 with surface carbon defects: Universal synthesis and enhanced visible-light photocatalytic hydrogen production [J]. Applied Catalysis B:Environmental, 2017, 218: 664-671. doi: 10.1016/j.apcatb.2017.07.022
|
[46] |
ZHANG J, XIN B, SHAN C, et al. Roles of oxygen-containing functional groups of O-doped g-C3N4 in catalytic ozonation: Quantitative relationship and first-principles investigation [J]. Applied Catalysis B:Environmental, 2021, 292: 120155. doi: 10.1016/j.apcatb.2021.120155
|
[47] |
PREEYANGHAA M, VINESH V, SABARIKIRISHWARAN P, et al. Investigating the role of ultrasound in improving the photocatalytic ability of CQD decorated boron-doped g-C3N4 for tetracycline degradation and first-principles study of nitrogen-vacancy formation [J]. Carbon, 2022, 192: 405-417. doi: 10.1016/j.carbon.2022.03.011
|
[48] |
LI Y F, WANG S, CHANG W, et al. Preparation and enhanced photocatalytic performance of sulfur doped terminal-methylated g-C3N4 nanosheets with extended visible-light response [J]. Journal of Materials Chemistry A, 2019, 7(36): 20640-20648. doi: 10.1039/C9TA07014A
|
[49] |
ZHANG S, LIU Y, GU P C, et al. Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C3N4: Mechanism exploration from both experimental and DFT studies [J]. Applied Catalysis B:Environmental, 2019, 248: 1-10. doi: 10.1016/j.apcatb.2019.02.008
|
[50] |
LI J Q, QI Y, MEI Y Q, et al. Construction of phosphorus-doped carbon nitride/phosphorus and sulfur co-doped carbon nitride isotype heterojunction and their enhanced photoactivity [J]. Journal of Colloid and Interface Science, 2020, 566: 495-504. doi: 10.1016/j.jcis.2020.01.102
|
[51] |
ZHANG B, LI X J, ZHAO Y, et al. Facile synthesis of oxygen doped mesoporous graphitic carbon nitride with high photocatalytic degradation efficiency under simulated solar irradiation [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 580: 123736. doi: 10.1016/j.colsurfa.2019.123736
|
[52] |
JIANG L B, YUAN X Z, ZENG G M, et al. A facile band alignment of polymeric carbon nitride isotype heterojunctions for enhanced photocatalytic tetracycline degradation [J]. Environmental Science:Nano, 2018, 5(11): 2604-2617. doi: 10.1039/C8EN00807H
|
[53] |
GUAN C T, JIANG J, PANG S Y, et al. Facile synthesis of pure g-C3N4 materials for peroxymonosulfate activation to degrade bisphenol A: Effects of precursors and annealing ambience on catalytic oxidation [J]. Chemical Engineering Journal, 2020, 387: 123726. doi: 10.1016/j.cej.2019.123726
|
[54] |
LIANG P, ZHANG C, DUAN X G, et al. An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: Formation mechanism and generation of singlet oxygen from peroxymonosulfate [J]. Environmental Science:Nano, 2017, 4(2): 315-324. doi: 10.1039/C6EN00633G
|
[55] |
ZHU Y, CHEN Z H, GAO Y W, et al. General synthesis of carbon and oxygen dual-doped graphitic carbon nitride via copolymerization for non-photochemical oxidation of organic pollutant [J]. Journal of Hazardous Materials, 2020, 394: 122578. doi: 10.1016/j.jhazmat.2020.122578
|
[56] |
WEI M Y, GAO L, LI J, et al. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation [J]. Journal of Hazardous Materials, 2016, 316: 60-68. doi: 10.1016/j.jhazmat.2016.05.031
|
[57] |
MIAO J, GENG W, ALVAREZ P J J, et al. 2D N-doped porous carbon derived from polydopamine-coated graphitic carbon nitride for efficient nonradical activation of peroxymonosulfate [J]. Environmental Science & Technology, 2020, 54(13): 8473-8481.
|
[58] |
WANG W J, WANG H N, LI G Y, et al. Visible light activation of persulfate by magnetic hydrochar for bacterial inactivation: Efficiency, recyclability and mechanisms [J]. Water Research, 2020, 176: 115746. doi: 10.1016/j.watres.2020.115746
|
[59] |
YANG Q, MA Y H, CHEN F, et al. Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water [J]. Chemical Engineering Journal, 2019, 378: 122149. doi: 10.1016/j.cej.2019.122149
|
[60] |
ZHAO Y, WANG G L, LI L J, et al. Enhanced activation of peroxymonosulfate by nitrogen-doped graphene/TiO2 under photo-assistance for organic pollutants degradation: Insight into N doping mechanism [J]. Chemosphere, 2020, 244: 125526. doi: 10.1016/j.chemosphere.2019.125526
|
[61] |
XU L J, QI L Y, SUN Y, et al. Mechanistic studies on peroxymonosulfate activation by g-C3N4 under visible light for enhanced oxidation of light-inert dimethyl phthalate [J]. Chinese Journal of Catalysis, 2020, 41(2): 322-332. doi: 10.1016/S1872-2067(19)63447-9
|
[62] |
YAN W, ZHANG R, JI F, et al. Deciphering co-catalytic mechanisms of potassium doped g-C3N4 in Fenton process [J]. Journal of Hazardous Materials, 2020, 392: 122472. doi: 10.1016/j.jhazmat.2020.122472
|
[63] |
张金水, 王博, 王心晨. 石墨相氮化碳的化学合成及应用 [J]. 物理化学学报, 2013, 29(9): 1865-1876. doi: 10.3866/PKU.WHXB201306173
ZHANG J S, WANG B, WANG X C. Chemical synthesis and applications of graphitic carbon nitride [J]. Acta Physico-Chimica Sinica, 2013, 29(9): 1865-1876(in Chinese). doi: 10.3866/PKU.WHXB201306173
|
[64] |
XIAO X, WANG Y H, BO Q, et al. One-step preparation of sulfur-doped porous g-C3N4 for enhanced visible light photocatalytic performance [J]. Dalton Transactions, 2020, 49(24): 8041-8050. doi: 10.1039/D0DT00299B
|
[65] |
MING H B, WEI D L, YANG Y, et al. Photocatalytic activation of peroxymonosulfate by carbon quantum dots functionalized carbon nitride for efficient degradation of bisphenol A under visible-light irradiation [J]. Chemical Engineering Journal, 2021, 424: 130296. doi: 10.1016/j.cej.2021.130296
|
[66] |
CUI M S, CUI K P, LIU X Y, et al. Insights into the photocatalytic peroxymonosulfate activation over defective boron-doped carbon nitride for efficient pollutants degradation [J]. Journal of Hazardous Materials, 2021, 418: 126338. doi: 10.1016/j.jhazmat.2021.126338
|
[67] |
SHI Y H, LI J S, WAN D J, et al. Peroxymonosulfate-enhanced photocatalysis by carbonyl-modified g-C3N4 for effective degradation of the tetracycline hydrochloride [J]. Science of the Total Environment, 2020, 749: 142313. doi: 10.1016/j.scitotenv.2020.142313
|
[68] |
CAO S H, FAN B, FENG Y C, et al. Sulfur-doped g-C3N4 nanosheets with carbon vacancies: General synthesis and improved activity for simulated solar-light photocatalytic nitrogen fixation [J]. Chemical Engineering Journal, 2018, 353: 147-156. doi: 10.1016/j.cej.2018.07.116
|
[69] |
DANGWANG DIKDIM J M, GONG Y, NOUMI G B, et al. Peroxymonosulfate improved photocatalytic degradation of atrazine by activated carbon/graphitic carbon nitride composite under visible light irradiation [J]. Chemosphere, 2019, 217: 833-842. doi: 10.1016/j.chemosphere.2018.10.177
|
[70] |
ZHANG J J, ZHAO X, WANG Y B, et al. Peroxymonosulfate-enhanced visible light photocatalytic degradation of bisphenol A by perylene imide-modified g-C3N4 [J]. Applied Catalysis B:Environmental, 2018, 237: 976-985. doi: 10.1016/j.apcatb.2018.06.049
|
[71] |
MENG Y, LI Z F, TAN J, et al. Oxygen-doped porous graphitic carbon nitride in photocatalytic peroxymonosulfate activation for enhanced carbamazepine removal: Performance, influence factors and mechanisms [J]. Chemical Engineering Journal, 2022, 429: 130860. doi: 10.1016/j.cej.2021.130860
|
[72] |
LIN K Y A, ZHANG Z Y. Metal-free activation of Oxone using one-step prepared sulfur-doped carbon nitride under visible light irradiation [J]. Separation and Purification Technology, 2017, 173: 72-79. doi: 10.1016/j.seppur.2016.09.008
|
[73] |
WANG G L, ZHAO Y, MA H R, et al. Enhanced peroxymonosulfate activation on dual active sites of N vacancy modified g-C3N4 under visible-light assistance and its selective removal of organic pollutants [J]. Science of the Total Environment, 2021, 756: 144139. doi: 10.1016/j.scitotenv.2020.144139
|
[74] |
SUDHAIK A, RAIZADA P, THAKUR S, et al. Peroxymonosulphate-mediated metal-free pesticide photodegradation and bacterial disinfection using well-dispersed graphene oxide supported phosphorus-doped graphitic carbon nitride [J]. Applied Nanoscience, 2020, 10(11): 4115-4137. doi: 10.1007/s13204-020-01529-1
|