[1] TANG Y K, ZHONG Y X, LI H L, et al. Contaminants of emerging concern in aquatic environment: Occurrence, monitoring, fate, and risk assessment[J]. Water Environment Research, 2020, 92(10): 1811-1817. doi: 10.1002/wer.1438
[2] VASILACHI I C, ASIMINICESEI D M, FERTU D I, et al. Occurrence and fate of emerging pollutants in water environment and options for their removal[J]. Water, 2021, 13(2): 181. doi: 10.3390/w13020181
[3] MOSTAFA A, GORECKI T. Sensitivity of comprehensive two-dimensional gas chromatography (GC×GC) versus one-dimensional gas chromatography (1D GC)[J]. LC GC Europe, 2013, 26(12): 672-679.
[4] KRUVE A, KIEFER K, HOLLENDER J. Benchmarking of the quantification approaches for the non-targeted screening of micropollutants and their transformation products in groundwater[J]. Analytical and Bioanalytical Chemistry, 2021, 413(6): 1549-1559. doi: 10.1007/s00216-020-03109-2
[5] SGORBINI B, CAGLIERO C, BOGGIA L, et al. Parallel dual secondary-column-dual detection comprehensive two‐dimensional gas chromatography: A flexible and reliable analytical tool for essential oils quantitative profiling[J]. Flavour and Fragrance Journal, 2015, 30(5): 366-380. doi: 10.1002/ffj.3255
[6] STILO F, LIBERTO E, REICHENBACH S E, et al. Exploring the extra-virgin olive oil volatilome by adding extra dimensions to comprehensive two-dimensional gas chromatography and time-of-flight mass spectrometry featuring tandem ionization: Validation of ripening markers in headspace linearity conditions[J]. Journal of AOAC International, 2021, 104(2): 274-287. doi: 10.1093/jaoacint/qsaa095
[7] EISERBECK C, NELSON R K, GRICE K, et al. Comparison of GC-MS, GC-MRM-MS, and GC×GC to characterise higher plant biomarkers in Tertiary oils and rock extracts[J]. Geochimica et Cosmochimica Acta, 2012, 87: 299-322. doi: 10.1016/j.gca.2012.03.033
[8] MURRAY J A. Qualitative and quantitative approaches in comprehensive two-dimensional gas chromatography[J]. Journal of Chromatography A, 2012, 1261: 58-68. doi: 10.1016/j.chroma.2012.05.012
[9] MUSCALU A M, GORECKI T. Comprehensive two-dimensional gas chromatography in environmental analysis[J]. TrAC Trends in Analytical Chemistry, 2018, 106: 225-245. doi: 10.1016/j.trac.2018.07.001
[10] MAZUR D M, ZENKEVICH I G, ARTAEV V B, et al. Regression algorithm for calculating second-dimension retention indices in comprehensive two-dimensional gas chromatography[J]. Journal of Chromatography A, 2018, 1569: 178-185. doi: 10.1016/j.chroma.2018.07.038
[11] CCANCCAPA-CARTAGENA A, PICO Y, ORTIZ X, et al. Suspect, non-target and target screening of emerging pollutants using data independent acquisition: Assessment of a Mediterranean River basin[J]. Science of the Total Environment, 2019, 687: 355-368. doi: 10.1016/j.scitotenv.2019.06.057
[12] GAGO-FERRERO P, SCHYMANSKI E L, BLETSOU A A, et al. Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS[J]. Environmental Science & Technology, 2015, 49(20): 12333-12341.
[13] HOH E, DODDER N G, LEHOTAY S J, et al. Nontargeted comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry method and software for inventorying persistent and bioaccumulative contaminants in marine environments[J]. Environmental Science & Technology, 2012, 46(15): 8001-8008.
[14] GOMEZ M J, HERRERA S, SOLE D, et al. Automatic searching and evaluation of priority and emerging contaminants in wastewater and river water by stir bar sorptive extraction followed by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry[J]. Analytical Chemistry, 2011, 83(7): 2638-2647. doi: 10.1021/ac102909g
[15] GUO Q Y, LI X, YU J W, et al. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry for the screening of potent swampy/septic odor-causing compounds in two drinking water sources in China[J]. Analytical Methods, 2015, 7(6): 2458-2468. doi: 10.1039/C4AY03026E
[16] WANDA E M M, NYONI H, MAMBA B B, et al. Occurrence of emerging micropollutants in water systems in Gauteng, Mpumalanga, and North West Provinces, South Africa[J]. International Journal of Environmental Research and Public Health, 2017, 14(1): 79. doi: 10.3390/ijerph14010079
[17] 徐伊静, 颜诗婷, 李佳敏, 等. 硅胶固载磺酸功能化离子液体催化棕榈酸制备生物柴油的工艺研究[J]. 中国粮油学报, 2019, 34(10): 42-48. doi: 10.3969/j.issn.1003-0174.2019.10.008
[18] 魏斌, 杜虎, 鲁墨弘, 等. 环保增塑剂 2, 2, 4-三甲基-1, 3-戊二醇二异丁酸酯的合成[J]. 精细石油化工, 2017, 34(6): 54-58. doi: 10.3969/j.issn.1003-9384.2017.06.012
[19] 郭威. 珠江口水体和沉积物有机碳的来源及其生物地球化学特征[D]. 北京: 中国科学院研究生院(广州地球化学研究所), 2016.
[20] 曹龙, 张朝升, 陈秋丽, 等. 邻苯二甲酸酯的环境污染和生态行为及毒理效应研究进展[J]. 生态毒理学报, 2018, 13(2): 34-46. doi: 10.7524/AJE.1673-5897.20170829001
[21] PRAHL F G, ERTEL J R, GONI M A, et al. Terrestrial organic carbon contributions to sediments on the Washington margin[J]. Geochimica et Cosmochimica Acta, 1994, 58(14): 3035-3048. doi: 10.1016/0016-7037(94)90177-5
[22] 冯精兰, 席楠楠, 张飞, 等. 黄河河南段水体中正构烷烃的分布特征与来源解析[J]. 环境科学, 2016, 37(3): 893-899. doi: 10.13227/j.hjkx.2016.03.013
[23] 李昆, 赵晓辉, 李科林, 等. 潘家口水库水体中有机物分布特征及变化趋势分析[J]. 人民珠江, 2020, 41(8): 98-102. doi: 10.3969/j.issn.1001-9235.2020.08.015
[24] 高静静, 陈丽玮, 王宜青, 等. 一株邻苯二甲酸二 (2-乙基己基) 酯 (DEHP) 高效降解菌的筛选及其降解特性[J]. 环境化学, 2016, 35(11): 2362-2369. doi: 10.7524/j.issn.0254-6108.2016.11.2016040103
[25] 王笑妍, 薛燕波, 者东梅, 等. 邻苯二甲酸酯类增塑剂概况及法规标准现状[J]. 中国塑料, 2019, 33(6): 95-105. doi: 10.19491/j.issn.1001-9278.2019.06.016
[26] 张悦, 袁骐, 蒋玫, 等. 邻苯二甲酸酯类毒性及检测方法研究进展[J]. 环境化学, 2019, 38(5): 1035-1046.
[27] 国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准: GB 3838-2002[S]. 北京: 中国环境科学出版社, 2002.