[1] |
ZHAO L, HUANG Y, ZHANG J, et al. Al2O3-modified CuO-CeO2 catalyst for simultaneous removal of NO and toluene at wide temperature range[J]. Chemical Engineering Journal, 2020, 397: 125-419.
|
[2] |
LU P, YE L, YAN X, et al. Impact of toluene poisoning on MnCe/HZSM-5 SCR catalyst[J]. Chemical Engineering Journal, 2021, 414: 128-838.
|
[3] |
LI Z, DAI S, MA L, et al. Synergistic interaction and mechanistic evaluation of NO oxidation catalysis on Pt/Fe2O3 cubes[J]. Chemical Engineering Journal, 2021, 413: 127-447.
|
[4] |
WU M, CHEN S, XIANG W, et al. Oxygen vacancy induced performance enhancement of toluene catalytic oxidation using LaFeO3 perovskite oxides[J]. Chemical Engineering Journal, 2020, 387: 124-101.
|
[5] |
YE L, LU P, CHEN X, et al. The deactivation mechanism of applied surface science on MnOx-CeO2 SCRcatalyst[J]. Applied Catalysis B:Environmental, 2020, 277: 119-257.
|
[6] |
LI X, GAO H, Influence of Ce doping on catalytic oxidation of NO on LaCoO3 (011) surface: A DFT study[J]. Applied Surface Science, 2020, 499: 143-866.
|
[7] |
CHEN J, SHEN M, WANG X, et al. Catalytic performance of NO oxidation over LaMeO3 (Me=Mn, Fe, Co) perovskite prepared by the sol–gel method[J]. Catalysis Communications, 2013, 37: 105-108. doi: 10.1016/j.catcom.2013.03.039
|
[8] |
ZHAO S, WANG L, WANG Y, et al. Hierarchically porous LaFeO3 perovskite prepared from the pomelo peel bio-template for catalytic oxidation of NO[J]. Journal of Physics and Chemistry of Solids, 2018, 116: 43-49. doi: 10.1016/j.jpcs.2017.12.057
|
[9] |
MARTINOVIC F, TRAN Q N, DEORSOLA F A, et al. SO2 deactivation mechanism of NO oxidation and regeneration of the LaCoO3 perovskite[J]. Catalysis Science & Technology, 2020, 10: 2193-2202.
|
[10] |
SHI X, GUO J, SHEN T, et al. Improvement of NH3-SCR activity and resistance to SO2 and H2O by Ce modified La-Mn perovskite catalyst[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 126: 102-111. doi: 10.1016/j.jtice.2021.06.056
|
[11] |
SHI X, GUO J, SHEN T, et al. Enhancement of Ce doped La–Mn oxides for the selective catalytic reduction of NOx with NH3 and SO2 and/or H2O resistance[J]. Chemical Engineering Journal, 2021, 421: 129-995.
|
[12] |
WU Y, LIU H, LI G, et al. Tuning composition on B sites of LaM0.5Mn0.5O3 (M = Cu, Co, Fe, Ni, Cr) perovskite catalysts in NOx efficient reduction[J]. Applied Surface Science, 2020, 508: 145-158.
|
[13] |
ZHENG S, HUA Q, GU W, et al. Catalytic oxidation of CO on LaMn1−xFexO3 perovskites solid solution[J]. Journal of Molecular Catalysis A:Chemical, 2014, 391: 7-11. doi: 10.1016/j.molcata.2014.04.001
|
[14] |
PIREZ C, CADERON J M, DACQUIN J P, et al. Tunable KIT-6 Mesoporous Sulfonic Acid Catalysts for Fatty Acid Esterification[J]. ACS Catalysis, 2012, 2(8): 1607-1614. doi: 10.1021/cs300161a
|
[15] |
裴文波, 张兴, 侯志全, 等. 多孔复合金属氧化物的制备及其在消除挥发性有机物中的应用[J]. 工业催化, 2020, 28(4): 39-51. doi: 10.3969/j.issn.1008-1143.2020.04.004
|
[16] |
李悦, 姜宏, 蔡思翔. 钒改性对铁基脱硝催化剂活性及抗碱性能的影响[J]. 人工晶体学报, 2021, 50(8): 1511-1517. doi: 10.3969/j.issn.1000-985X.2021.08.017
|
[17] |
SHEN B, ZHU S, ZHANG X, et al. Simultaneous removal of NO and Hg0 using Fe and Co co-doped Mn-Ce/TiO2 catalysts[J]. Fuel, 2018, 224: 241-249. doi: 10.1016/j.fuel.2018.03.080
|
[18] |
GLISENTI A, PACELLA M, ACELLA M, et al. Largely Cu-doped LaCo1−xCuxO3 perovskites for TWC: Toward new PGM-free catalysts[J]. Applied Catalysis B:Environmental, 2016, 180: 94-105. doi: 10.1016/j.apcatb.2015.06.017
|
[19] |
魏永林, 陈红萍, 侯欣辛, 等. Fe-Mn/TiO2低温NH3-SCR脱硝催化剂的SO2中毒机理[J]. 功能材料, 2021, 52(04): 4132-4139+4146. doi: 10.3969/j.issn.1001-9731.2021.04.020
|
[20] |
Y WANG Y, YI W, YU J, et al. Novel Methods for Assessing the SO2 Poisoning Effect and Thermal Regeneration Possibility of MOx-WO3/TiO2 (M = Fe, Mn, Cu, and V) Catalysts for NH3-SCR[J]. Environmental Science & Technology, 2020, 54: 12612-12620.
|
[21] |
WANG F, SHEN B, ZHU S, et al. Promotion of Fe and Co doped Mn-Ce/TiO2 catalysts for low temperature NH3-SCR with SO2 tolerance[J]. Fuel, 2019, 249: 54-60. doi: 10.1016/j.fuel.2019.02.113
|
[22] |
FRANCE L J, YANG Q, LI W, et al. Ceria modified FeMnOx—Enhanced performance and sulphur resistance for low-temperature SCR of NOx[J]. Applied Catalysis B:Environmental, 2021, 206: 203-215.
|
[23] |
GAO F, TANG X, YI H, et al. Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature[J]. Chemical Engineering Journal, 2017, 317: 20-31. doi: 10.1016/j.cej.2017.02.042
|
[24] |
ZHAO M, DENG J, LIU J, et al. Roles of Surface-Active Oxygen Species on 3DOM cobalt-based spinel catalysts MxCo3–xO4 (M = Zn and Ni) for NOx-assisted soot oxidation[J]. ACS Catalysis, 2019, 9: 7548-7567. doi: 10.1021/acscatal.9b01995
|
[25] |
YI Y, LIU H, CHU B, et al. Catalytic removal NO by CO over LaNi0.5M0.5O3 (M = Co, Mn, Cu) perovskite oxide catalysts: Tune surface chemical composition to improve N2 selectivity[J]. Chemical Engineering Journal, 2019, 369: 511-521. doi: 10.1016/j.cej.2019.03.066
|
[26] |
WANG H, ZHNG C, MA Q, et al. The adsorption and oxidation of SO2 on MgO surface: experimental and DFT calculation studies[J]. Environmental Science:Nano, 2020, 7: 1092-1101. doi: 10.1039/C9EN01474H
|
[27] |
KANG L, HAN L, HE J, et al. Improved NOx reduction in the presence of SO2 by using Fe2O3-promoted halloysite-supported CeO2-WO3 catalysts[J]. Environmental Science & Technology, 2019, 53: 938-945.
|
[28] |
TANG X, SHI Y, GAO F, et al. Promotional Role of Mo on Ce0.3FeOx catalyst towards enhanced NH3-SCR catalytic performance and SO2 resistance[J]. Chemical Engineering Journal, 2020, 398: 125-619.
|
[29] |
房德仁, 李婉君, 刘中民, 等. Cu-Fe合成低碳醇催化剂性能研究[J]. 工业催化, 2013, 21(7): 39-44. doi: 10.3969/j.issn.1008-1143.2013.07.009
|
[30] |
ARANDIYAN H, DAI H, DENG J, et al. Three-dimensionally ordered macroporous La0.6Sr0.4MnO3 with high surface areas: Active catalysts for the combustion of methane[J]. Journal of Catalysis, 2013, 307: 327-339. doi: 10.1016/j.jcat.2013.07.013
|
[31] |
ZHU H, SONG X, HAN X, et al. Co3O4 Nanosheets preferentially growing (220) facet with a large amount of surface chemisorbed oxygen for efficient oxidation of elemental mercury from flue gas[J]. Environmental Science & Technology, 2020, 54: 8601-8611.
|
[32] |
SMIRNOV M Y, KALINKIN A V, PASHIS A V, ea al. Interaction of Al2O3 and CeO2 Surfaces with SO2 and SO2 + O2 Studied by X-ray Photoelectron Spectroscopy[J]. The Journal of Physical Chemistry B, 2005, 109: 11712-11719. doi: 10.1021/jp0508249
|