[1] 郭萌萌, 崔文杰, 刘晓玉, 等. 黄渤海区域水产品中全氟烷基物质的分布特征 [J]. 中国环境科学, 2020, 40(8): 3424-3432. doi: 10.3969/j.issn.1000-6923.2020.08.021 GUO M M, CUI W J, LIU X Y, et al. Distribution of perfluoroalkyl substances in aquatic products in coastal and adjacent areas of the Yellow Sea and Bohai Sea, China [J]. China Environmental Science, 2020, 40(8): 3424-3432(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.08.021
[2] KOTTHOFF M, MÜLLER J, JÜRLING H, et al. Perfluoroalkyl and polyfluoroalkyl substances in consumer products [J]. Environmental Science and Pollution Research, 2015, 22(19): 14546-14559. doi: 10.1007/s11356-015-4202-7
[3] AAS C B, FUGLEI E, HERZKE D, et al. Effect of body condition on tissue distribution of perfluoroalkyl substances (PFASs) in arctic fox (Vulpes lagopus) [J]. Environmental Science & Technology, 2014, 48(19): 11654-11661.
[4] CHEN H, HAN J B, CHENG J Y, et al. Distribution, bioaccumulation and trophic transfer of chlorinated polyfluoroalkyl ether sulfonic acids in the marine food web of Bohai, China [J]. Environmental Pollution, 2018, 241: 504-510. doi: 10.1016/j.envpol.2018.05.087
[5] ROUTTI H, ATWOOD T C, BECHSHOFT T, et al. State of knowledge on current exposure, fate and potential health effects of contaminants in polar bears from the circumpolar Arctic [J]. Science of the Total Environment, 2019, 664: 1063-1083. doi: 10.1016/j.scitotenv.2019.02.030
[6] PÉREZ F, NADAL M, NAVARRO-ORTEGA A, et al. Accumulation of perfluoroalkyl substances in human tissues [J]. Environment International, 2013, 59: 354-362. doi: 10.1016/j.envint.2013.06.004
[7] GIESY J P, KANNAN K. Global distribution of perfluorooctane sulfonate in wildlife [J]. Environmental Science & Technology, 2001, 35(7): 1339-1342.
[8] LINDSTROM A B, STRYNAR M J, LIBELO E L. Polyfluorinated compounds: Past, present, and future [J]. Environmental Science & Technology, 2011, 45(19): 7954-7961.
[9] SEACAT A M, THOMFORD P J, HANSEN K J, et al. Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats [J]. Toxicology, 2003, 183(1/2/3): 117-131.
[10] 王亚韡, 蔡亚岐, 江桂斌. 斯德哥尔摩公约新增持久性有机污染物的一些研究进展 [J]. 中国科学:化学, 2010, 40(2): 99-123. doi: 10.1360/zb2010-40-2-99 WANG Y W, CAI Y Q, JIANG G B. Research processes of persistent organic pollutants (POPs) newly listed and candidate POPs in Stockholm Convention [J]. Scientia Sinica (Chimica), 2010, 40(2): 99-123(in Chinese). doi: 10.1360/zb2010-40-2-99
[11] JIN Q, MA J H, SHI Y L, et al. Biomonitoring of chlorinated polyfluoroalkyl ether sulfonic acid in the general population in central and Eastern China: Occurrence and associations with age/sex [J]. Environment International, 2020, 144: 106043. doi: 10.1016/j.envint.2020.106043
[12] CUI Q Q, PAN Y T, ZHANG H X, et al. Occurrence and tissue distribution of novel perfluoroether carboxylic and sulfonic acids and legacy per/polyfluoroalkyl substances in black-spotted frog (Pelophylax nigromaculatus) [J]. Environmental Science & Technology, 2018, 52(3): 982-990.
[13] WANG S W, HUANG J, YANG Y, et al. First report of a Chinese PFOS alternative overlooked for 30 years: Its toxicity, persistence, and presence in the environment [J]. Environmental Science & Technology, 2013, 47(18): 10163-10170.
[14] JIN H B, LIN S, DAI W, et al. Exposure sources of perfluoroalkyl acids and influence of age and gender on concentrations of chlorinated polyfluorinated ether sulfonates in human serum from China [J]. Environment International, 2020, 138: 105651. doi: 10.1016/j.envint.2020.105651
[15] GU J P, JI C Y, YUE S Q, et al. Enantioselective effects of metalaxyl enantiomers in adolescent rat metabolic profiles using NMR-based metabolomics [J]. Environmental Science & Technology, 2018, 52(9): 5438-5447.
[16] 顾金苹. 用基于NMR的代谢组学方法研究胃炎癌化过程的代谢网络和分子机制[D]. 厦门: 厦门大学, 2016: 89-91. GU J P. Elucidation of metabolic networks and molecular mechanisms of gastric carcinogenesis by NMR-based metabonomic analysis[D]. Xiamen: Xiamen University, 2016: 89-91(in Chinese).
[17] FENG R N, NIU Y C, SUN X W, et al. Histidine supplementation improves insulin resistance through suppressed inflammation in obese women with the metabolic syndrome: A randomised controlled trial [J]. Diabetologia, 2013, 56(5): 985-994. doi: 10.1007/s00125-013-2839-7
[18] ZHANG Z W, ZHANG X W, MENG L, et al. Pioglitazone inhibits diabetes-induced atrial mitochondrial oxidative stress and improves mitochondrial biogenesis, dynamics, and function through the PPAR-γ/PGC-1α signaling pathway [J]. Frontiers in Pharmacology, 2021, 12: 658362. doi: 10.3389/fphar.2021.658362
[19] BONATO M, CORRÀ F, BELLIO M, et al. PFAS environmental pollution and antioxidant responses: An overview of the impact on human field [J]. International Journal of Environmental Research and Public Health, 2020, 17(21): 8020. doi: 10.3390/ijerph17218020
[20] WIELSØE M, LONG M H, GHISARI M, et al. Perfluoroalkylated substances (PFAS) affect oxidative stress biomarkers in vitro [J]. Chemosphere, 2015, 129: 239-245. doi: 10.1016/j.chemosphere.2014.10.014
[21] CHEN T, ZHANG L, YUE J Q, et al. Prenatal PFOS exposure induces oxidative stress and apoptosis in the lung of rat off-spring [J]. Reproductive Toxicology, 2012, 33(4): 538-545. doi: 10.1016/j.reprotox.2011.03.003
[22] WU Y M, DENG M, JIN Y X, et al. Uptake and elimination of emerging polyfluoroalkyl substance F-53B in zebrafish larvae: Response of oxidative stress biomarkers [J]. Chemosphere, 2019, 215: 182-188. doi: 10.1016/j.chemosphere.2018.10.025
[23] RYU M H, JHA A, OJO O O, et al. Chronic exposure to perfluorinated compounds: Impact on airway hyperresponsiveness and inflammation [J]. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2014, 307(10): L765-L774. doi: 10.1152/ajplung.00100.2014
[24] GOSTNER J M, BECKER K, KURZ K, et al. Disturbed amino acid metabolism in HIV: Association with neuropsychiatric symptoms [J]. Frontiers in Psychiatry, 2015, 6: 97.
[25] FOGUTH R, SEPÚLVEDA M S, CANNON J. Per- and polyfluoroalkyl substances (PFAS) neurotoxicity in sentinel and non-traditional laboratory model systems: Potential utility in predicting adverse outcomes in human health [J]. Toxics, 2020, 8(2): 42. doi: 10.3390/toxics8020042
[26] JOHANSSON N, FREDRIKSSON A, ERIKSSON P. Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice [J]. NeuroToxicology, 2008, 29(1): 160-169. doi: 10.1016/j.neuro.2007.10.008
[27] CUI L, ZHOU Q F, LIAO C Y, et al. Studies on the toxicological effects of PFOA and PFOS on rats using histological observation and chemical analysis [J]. Archives of Environmental Contamination and Toxicology, 2008, 56(2): 338-349.
[28] KLEIN J, KÖPPEN A, LÖFFELHOLZ K. Regulation of free choline in rat brain: Dietary and pharmacological manipulations [J]. Neurochemistry International, 1998, 32(5/6): 479-485.
[29] BIRRU R L, LIANG H W, FAROOQ F, et al. A pathway level analysis of PFAS exposure and risk of gestational diabetes mellitus [J]. Environmental Health, 2021, 20(1): 63. doi: 10.1186/s12940-021-00740-z
[30] SCHURR A. Lactate: the ultimate cerebral oxidative energy substrate? [J]. Journal of Cerebral Blood Flow and Metabolism, 2006, 26(1): 142-152. doi: 10.1038/sj.jcbfm.9600174
[31] NIKKILAE E A, OJALA K. Glycerol as an endogenous precursor of body glucose in the rat [J]. Annales Medicinae Experimentalis et Biologiae Fenniae, 1963, 41: 478-484.
[32] 霍丽丽, 纪立农. 血清丙氨酸转氨酶与糖代谢状况关系的研究 [J]. 中国糖尿病杂志, 2012, 20(2): 91-94. doi: 10.3969/j.issn.1006-6187.2012.02.001 HUO L L, JI L N. Study of relationship between serum alanine aminotransferase level and the different states of glucose metabolism [J]. Chinese Journal of Diabetes, 2012, 20(2): 91-94(in Chinese). doi: 10.3969/j.issn.1006-6187.2012.02.001
[33] CHAMPE P C, HARVEY R A. Lippincott's Illustrated Reviews: Biochemistry[M]. Second Edition. Philadelphia: Lippencott Williams & Wilkins, 2007: 163-205.
[34] 张王宁, 李爱平, 刘少博, 等. 基于代谢组学的阿霉素肾病大鼠模型损伤程度评价 [J]. 中草药, 2018, 49(2): 360-367. doi: 10.7501/j.issn.0253-2670.2018.02.015 ZHANG W N, LI A P, LIU S B, et al. Evaluation of injury degree of rat nephropathy model induced by doxorubicin based on metabolomics [J]. Chinese Traditional and Herbal Drugs, 2018, 49(2): 360-367(in Chinese). doi: 10.7501/j.issn.0253-2670.2018.02.015
[35] DU H Z, ZHAO Y R, YIN Z W, et al. The role of miR-320 in glucose and lipid metabolism disorder-associated diseases [J]. International Journal of Biological Sciences, 2021, 17(2): 402-416. doi: 10.7150/ijbs.53419
[36] MA S Y, XU C, MA J, et al. Association between perfluoroalkyl substance concentrations and blood pressure in adolescents [J]. Environmental Pollution, 2019, 254: 112971. doi: 10.1016/j.envpol.2019.112971
[37] MI X, YANG Y Q, ZEESHAN M, et al. Serum levels of per- and polyfluoroalkyl substances alternatives and blood pressure by sex status: Isomers of C8 health project in China [J]. Chemosphere, 2020, 261: 127691. doi: 10.1016/j.chemosphere.2020.127691
[38] HAN X, MENG L L, ZHANG G X, et al. Exposure to novel and legacy per- and polyfluoroalkyl substances (PFASs) and associations with type 2 diabetes: A case-control study in East China [J]. Environment International, 2021, 156: 106637. doi: 10.1016/j.envint.2021.106637