[1] 阮挺, 江桂斌. 发现新型环境有机污染物的基本理论与方法 [J]. 中国科学院院刊, 2020, 35(11): 1328-1336. doi: 10.16418/j.issn.1000-3045.20200915004 RUAN T, JIANG G B. Basic theory and analytical methodology for identification of novel environmental organic pollutants [J]. Bulletin of Chinese Academy of Sciences, 2020, 35(11): 1328-1336(in Chinese). doi: 10.16418/j.issn.1000-3045.20200915004
[2] 张佩萱, 高丽荣, 宋世杰, 等. 环境中短链和中链氯化石蜡的来源、污染特征及环境行为研究进展 [J]. 环境化学, 2021, 40(2): 371-383. doi: 10.7524/j.issn.0254-6108.2020101603 ZHANG P X, GAO L R, SONG S J, et al. Chlorinated paraffins in the environment: A review on their sources, levels and fate [J]. Environmental Chemistry, 2021, 40(2): 371-383(in Chinese). doi: 10.7524/j.issn.0254-6108.2020101603
[3] 林泳峰, 阮挺, 江桂斌. 新型全氟和多氟烷基化合物的分析、行为与效应研究进展 [J]. 科学通报, 2017, 62(24): 2724-2733. doi: 10.1360/N972017-00223 LIN Y F, RUAN T, JIANG G B. Progress on analytical methods and environmental behavior of emerging per-and polyfluoroalkyl substances [J]. Chinese Science Bulletin, 2017, 62(24): 2724-2733(in Chinese). doi: 10.1360/N972017-00223
[4] DAUGHTON C G, TERNES T A. Pharmaceuticals and personal care products in the environment: Agents of subtle change?[J]. Environmental Health Perspectives, 1999, 107(Suppl 6): 907-938.
[5] MANZETTI S, van der SPOEL E R, van der SPOEL D. Chemical properties, environmental fate, and degradation of seven classes of pollutants [J]. Chemical Research in Toxicology, 2014, 27(5): 713-737. doi: 10.1021/tx500014w
[6] ZHAO S, WANG J H, FENG S J, et al. Effects of ecohydrological interfaces on migrations and transformations of pollutants: A critical review [J]. Science of the Total Environment, 2022, 804: 150140. doi: 10.1016/j.scitotenv.2021.150140
[7] 曲久辉, 贺泓, 刘会娟. 典型环境微界面及其对污染物环境行为的影响 [J]. 环境科学学报, 2009, 29(1): 2-10. doi: 10.3321/j.issn:0253-2468.2009.01.002 QU J H, HE H, LIU H J. Typical environmental micro-interfaces and its effect on environmental behaviors of pollutants [J]. Acta Scientiae Circumstantiae, 2009, 29(1): 2-10(in Chinese). doi: 10.3321/j.issn:0253-2468.2009.01.002
[8] 张爱茜, 刘景富, 景传勇, 等. 我国环境化学研究新进展 [J]. 化学通报, 2014, 77(7): 654-659. doi: 10.14159/j.cnki.0441-3776.2014.07.005 ZHANG A Q, LIU J F, JING C Y, et al. Latest progresses in environmental chemistry in China [J]. Chemistry, 2014, 77(7): 654-659(in Chinese). doi: 10.14159/j.cnki.0441-3776.2014.07.005
[9] DAUGHTON C G. “Emerging” chemicals as pollutants in the environment: A 21st century perspective [J]. Renewable Resources Journal, 2005, 23(4): 6-23.
[10] 李院霞, 史雪倩, 李红, 等. 同步辐射X射线荧光和吸收谱技术在环境汞污染研究中的应用进展 [J]. 生态毒理学报, 2018, 13(6): 30-38. LI Y X, SHI X Q, LI H, et al. Review of studies using synchrotron radiation X-ray fluorescence and X-ray absorption spectrum techniques on environmental Hg pollution [J]. Asian Journal of Ecotoxicology, 2018, 13(6): 30-38(in Chinese).
[11] 陈景文, 王中钰, 傅志强. 环境计算化学与毒理学[M]. 北京: 科学出版社, 2018. CHEN J W, WANG Z Y, FU Z Q. Environmental computational chemistry and toxicology [M]. Beijing: Science Press, 2018(in Chinese).
[12] TOMASI J, MENNUCCI B, CAMMI R. Quantum mechanical continuum solvation models [J]. Chemical Reviews, 2005, 36(42): 2999-3093.
[13] ALLEN M P, TILDESLEY D J. Computer Simulation of Liquids[M]. Second edition. Oxford, United Kingdom: Oxford University Press, 2017.
[14] OTTO D P, DE VILLIERS M M. Coarse-grained molecular dynamics (CG-MD) simulation of the encapsulation of dexamethasone in PSS/PDDA layer-by-layer assembled polyelectrolyte nanocapsules [J]. AAPS PharmSciTech, 2020, 21(8): 292. doi: 10.1208/s12249-020-01843-5
[15] LIU M B, LIU G R, ZHOU L W, et al. Dissipative Particle Dynamics (DPD): An overview and recent developments [J]. Archives of Computational Methods in Engineering, 2015, 22(4): 529-556. doi: 10.1007/s11831-014-9124-x
[16] ORSI M. Molecular dynamics simulation of humic substances [J]. Chemical and Biological Technologies in Agriculture, 2014, 1: 10. doi: 10.1186/s40538-014-0010-4
[17] TRATNYEK P G, BYLASKA E J, WEBER E J. In silico environmental chemical science: Properties and processes from statistical and computational modelling [J]. Environmental Science. Processes & Impacts, 2017, 19(3): 188-202.
[18] FENG H R, LIN Y, SUN Y Z, et al. In silico approach to investigating the adsorption mechanisms of short chain perfluorinated sulfonic acids and perfluorooctane sulfonic acid on hydrated hematite surface [J]. Water Research, 2017, 114: 144-150. doi: 10.1016/j.watres.2017.02.024
[19] JIANG X Z, WANG W, YU G, et al. Contribution of nanobubbles for PFAS adsorption on graphene and OH- and NH2-functionalized graphene: Comparing simulations with experimental results [J]. Environmental Science & Technology, 2021, 55(19): 13254-13263.
[20] 林梦海. 量子化学简明教程[M]. 北京: 化学工业出版社, 2005. LIN M H. Concise course in quantum chemistry [M]. Beijing: Chemical Industry Press, 2005(in Chinese).
[21] van der SPOEL D, MANZETTI S, ZHANG H Y, et al. Prediction of partition coefficients of environmental toxins using computational chemistry methods [J]. ACS Omega, 2019, 4(9): 13772-13781. doi: 10.1021/acsomega.9b01277
[22] FU W J, XIA G J, ZHANG Y X, et al. Using general computational chemistry strategy to unravel the reactivity of emerging pollutants: An example of sulfonamide chlorination [J]. Water Research, 2021, 202: 117391. doi: 10.1016/j.watres.2021.117391
[23] MILMAN V, WINKLER B, WHITE J A, et al. Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study [J]. International Journal of Quantum Chemistry, 2000, 77(5): 895-910. doi: 10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C
[24] MAZUREK A H, SZELESZCZUK Ł, PISKLAK D M. Periodic DFT calculations-review of applications in the pharmaceutical sciences [J]. Pharmaceutics, 2020, 12(5): 415. doi: 10.3390/pharmaceutics12050415
[25] HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Physical Review, 1964, 136(3B): B864-B871. doi: 10.1103/PhysRev.136.B864
[26] KOHN W, BECKE A D, PARR R G. Density functional theory of electronic structure [J]. The Journal of Physical Chemistry, 1996, 100(31): 12974-12980. doi: 10.1021/jp960669l
[27] RAMACHANDRAN K I, DEEPA G, NAMBOORI K. Computational chemistry and molecular modeling[M]. Berlin: Springer Berlin Heidelberg, 2008
[28] RAPAPORT D. The art of molecular dynamics simulation [M]. 2nd ed. Cambridge: Cambridge University Press, 2004
[29] 陈正隆, 徐为人, 汤立达. 分子模拟的理论与实践[M]. 北京: 化学工业出版社, 2007. CHEN Z L, XU W R, TANG L D. Theory and practice of molecular simulation [M]. Beijing: Chemical Industry Press, 2007(in Chinese).
[30] KLEIN M L, SHINODA W. Large-scale molecular dynamics simulations of self-assembling systems [J]. Science, 2008, 321(5890): 798-800. doi: 10.1126/science.1157834
[31] JOSHI S Y, DESHMUKH S A. A review of advancements in coarse-grained molecular dynamics simulations [J]. Molecular Simulation, 2021, 47(10/11): 786-803.
[32] ALESSANDRI R, GRÜNEWALD F, MARRINK S J. The martini model in materials science [J]. Advanced Materials, 2021, 33(24): 2008635. doi: 10.1002/adma.202008635
[33] HOOGERBRUGGE P J, KOELMAN J M V A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics [J]. Europhysics Letters, 1992, 19(3): 155-160. doi: 10.1209/0295-5075/19/3/001
[34] KONG Y, MANKE C W, MADDEN W G, et al. Simulation of a confined polymer in solution using the dissipative particle dynamics method [J]. International Journal of Thermophysics, 1994, 15(6): 1093-1101. doi: 10.1007/BF01458818
[35] ESPAÑOL P. Hydrodynamics from dissipative particle dynamics [J]. Physical Review E, 1995, 52(2): 1734-1742. doi: 10.1103/PhysRevE.52.1734
[36] GROOT R D, WARREN P B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation [J]. The Journal of Chemical Physics, 1997, 107(11): 4423-4435. doi: 10.1063/1.474784
[37] GUO F Y, XU J C, FEIN J B, et al. Crystal face-dependent methylmercury adsorption onto mackinawite (FeS) nanocrystals: A DFT-D3 study [J]. Chemical Engineering Journal, 2021, 420: 127594. doi: 10.1016/j.cej.2020.127594
[38] AHMED A A, THIELE-BRUHN S, LEINWEBER P, et al. Towards a molecular level understanding of the sulfanilamide-soil organic matter-interaction [J]. Science of the Total Environment, 2016, 559: 347-355. doi: 10.1016/j.scitotenv.2016.03.136
[39] LI J, WU Y L, BAI H H, et al. Highly efficient adsorption and mechanism of alkylphenols on magnetic reduced graphene oxide [J]. Chemosphere, 2021, 283: 131232. doi: 10.1016/j.chemosphere.2021.131232
[40] ZOU M Y, ZHANG J D, CHEN J W, et al. Simulating adsorption of organic pollutants on finite (8, 0) single-walled carbon nanotubes in water [J]. Environmental Science & Technology, 2012, 46(16): 8887-8894.
[41] MOSALLANEJAD S, DLUGOGORSKI B Z, KENNEDY E M, et al. Formation of PCDD/fs in oxidation of 2-chlorophenol on neat silica surface [J]. Environmental Science & Technology, 2016, 50(3): 1412-1418.
[42] PAN W X, CHANG J M, LIU X, et al. Interfacial formation of environmentally persistent free radicals—A theoretical investigation on pentachlorophenol activation on montmorillonite in PM2.5 [J]. Ecotoxicology and Environmental Safety, 2019, 169: 623-630. doi: 10.1016/j.ecoenv.2018.11.041
[43] ASSAF N W, ALTARAWNEH M, OLUWOYE I, et al. Formation of environmentally persistent free radicals on α-Al2O3 [J]. Environmental Science & Technology, 2016, 50(20): 11094-11102.
[44] LOMNICKI S, TRUONG H, VEJERANO E, et al. Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter [J]. Environmental Science & Technology, 2008, 42(13): 4982-4988.
[45] SAKR N I, KIZILKAYA O, CARLSON S F, et al. Formation of environmentally persistent free radicals (EPFRs) on the phenol-dosed α-Fe2O3(0001) surface [J]. The Journal of Physical Chemistry C, Nanomaterials and Interfaces, 2021, 125(40): 21882-21890. doi: 10.1021/acs.jpcc.1c04298
[46] AHMED O H, ALTARAWNEH M, AL-HARAHSHEH M, et al. Formation of phenoxy-type environmental persistent free radicals (EPFRs) from dissociative adsorption of phenol on Cu/Fe and their partial oxides [J]. Chemosphere, 2020, 240: 124921. doi: 10.1016/j.chemosphere.2019.124921
[47] PAN W X, CHANG J M, HE S M, et al. Major influence of hydroxyl and nitrate radicals on air pollution by environmentally persistent free radicals [J]. Environmental Chemistry Letters, 2021, 19(6): 4455-4461. doi: 10.1007/s10311-021-01278-9
[48] LIU C, MIN Y, ZHANG A Y, et al. Electrochemical treatment of phenol-containing wastewater by facet-tailored TiO2: Efficiency, characteristics and mechanisms [J]. Water Research, 2019, 165: 114980. doi: 10.1016/j.watres.2019.114980
[49] HUANG M J, HAN Y, XIANG W, et al. In situ-formed phenoxyl radical on the CuO surface triggers efficient persulfate activation for phenol degradation [J]. Environmental Science & Technology, 2021, 55(22): 15361-15370.
[50] GAO M, HE G, ZHANG W, et al. Reaction pathways of the selective catalytic reduction of NO with NH3 on the α-Fe2O3 (012) surface: A combined experimental and DFT study [J]. Environmental Science & Technology, 2021, 55(16): 10967-10974.
[51] SUI H, LI L, ZHU X Z, et al. Modeling the adsorption of PAH mixture in silica nanopores by molecular dynamic simulation combined with machine learning [J]. Chemosphere, 2016, 144: 1950-1959. doi: 10.1016/j.chemosphere.2015.10.053
[52] ARISTILDE L, MARICHAL C, MIÉHÉ-BRENDLÉ J, et al. Interactions of oxytetracycline with a smectite clay: A spectroscopic study with molecular simulations [J]. Environmental Science & Technology, 2010, 44(20): 7839-7845.
[53] KERISIT S, LIU C X. Molecular dynamics simulations of uranyl and uranyl carbonate adsorption at aluminosilicate surfaces [J]. Environmental Science & Technology, 2014, 48(7): 3899-3907.
[54] WILLEMSEN J A R, MYNENI S C B, BOURG I C. Molecular dynamics simulations of the adsorption of phthalate esters on smectite clay surfaces [J]. The Journal of Physical Chemistry C, 2019, 123(22): 13624-13636. doi: 10.1021/acs.jpcc.9b01864
[55] ZHU X Z, CHEN D Y, WU G Z. Molecular dynamic simulation of asphaltene co-aggregation with humic acid during oil spill [J]. Chemosphere, 2015, 138: 412-421. doi: 10.1016/j.chemosphere.2015.06.074
[56] PETROV D, TUNEGA D, GERZABEK M H, et al. Molecular modelling of sorption processes of a range of diverse small organic molecules in Leonardite humic acid [J]. European Journal of Soil Science, 2020, 71(5): 831-844.
[57] VIALYKH E A, SALAHUB D R, ACHARI G, et al. Emergent functional behaviour of humic substances perceived as complex labile aggregates of small organic molecules and oligomers [J]. Environmental Chemistry, 2019, 16(7): 505. doi: 10.1071/EN19095
[58] TUNEGA D, GERZABEK M H, HABERHAUER G, et al. Adsorption process of polar and nonpolar compounds in a nanopore model of humic substances [J]. European Journal of Soil Science, 2020, 71(5): 845-855.
[59] ZHAO N, JU F, PAN H, et al. Molecular dynamics simulation of the interaction of water and humic acid in the adsorption of polycyclic aromatic hydrocarbons [J]. Environmental Science and Pollution Research International, 2020, 27(20): 25754-25765. doi: 10.1007/s11356-020-09018-2
[60] 林文强, 徐斌, 陈亮, 等. 双酚A在氧化石墨烯表面吸附的分子动力学模拟 [J]. 物理学报, 2016, 65(13): 86-92. doi: 10.7498/aps.65.133102 LIN W Q, XU B, CHEN L, et al. Molecular dynamics simulations of the adsorption of bisphenol A on graphene oxide [J]. Acta Physica Sinica, 2016, 65(13): 86-92(in Chinese). doi: 10.7498/aps.65.133102
[61] WANG Y, COMER J, CHEN Z F, et al. Exploring adsorption of neutral aromatic pollutants onto graphene nanomaterials via molecular dynamics simulations and theoretical linear solvation energy relationships [J]. Environmental Science:Nano, 2018, 5: 2117-2128. doi: 10.1039/C8EN00575C
[62] TANG H, ZHAO Y, SHAN S J, et al. Theoretical insight into the adsorption of aromatic compounds on graphene oxide [J]. Environmental Science:Nano, 2018, 5(10): 2357-2367. doi: 10.1039/C8EN00384J
[63] TANG H, ZHAO Y, YANG X N, et al. Understanding the pH-dependent adsorption of ionizable compounds on graphene oxide using molecular dynamics simulations [J]. Environmental Science:Nano, 2017, 4(10): 1935-1943. doi: 10.1039/C7EN00585G
[64] TANG H, ZHAO Y, SHAN S J, et al. Wrinkle- and edge-adsorption of aromatic compounds on graphene oxide as revealed by atomic force microscopy, molecular dynamics simulation, and density functional theory [J]. Environmental Science & Technology, 2018, 52(14): 7689-7697.
[65] 赵超锋, 金佳人, 霍英忠, 等. 氧化石墨烯吸附水体中酚类有机污染物的分子动力学模拟 [J]. 无机材料学报, 2020, 35(3): 277-285. doi: 10.15541/jim20190377 ZHAO C F, JIN J R, HUO Y Z, et al. Adsorption of phenolic organic pollutants on graphene oxide: Molecular dynamics study [J]. Journal of Inorganic Materials, 2020, 35(3): 277-285(in Chinese). doi: 10.15541/jim20190377
[66] SCHWARZENBACH R P, ESCHER B I, FENNER K, et al. The challenge of micropollutants in aquatic systems [J]. Science, 2006, 313(5790): 1072-1077. doi: 10.1126/science.1127291
[67] GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made [J]. Science Advances, 2017, 3(7): e1700782. doi: 10.1126/sciadv.1700782
[68] RAMALHO J P P, DORDIO A V, CARVALHO A J P. The fate of three common plastic nanoparticles in water: A molecular dynamics study [J]. Journal of Molecular Structure, 2022, 1249: 131520. doi: 10.1016/j.molstruc.2021.131520
[69] GUO X, LIU Y, WANG J L. Equilibrium, kinetics and molecular dynamic modeling of Sr2+ sorption onto microplastics [J]. Journal of Hazardous Materials, 2020, 400: 123324. doi: 10.1016/j.jhazmat.2020.123324
[70] LI H, WANG F H, LI J N, et al. Adsorption of three pesticides on polyethylene microplastics in aqueous solutions: Kinetics, isotherms, thermodynamics, and molecular dynamics simulation [J]. Chemosphere, 2021, 264: 128556. doi: 10.1016/j.chemosphere.2020.128556
[71] CHEN Y J, LI J N, WANG F H, et al. Adsorption of tetracyclines onto polyethylene microplastics: A combined study of experiment and molecular dynamics simulation [J]. Chemosphere, 2021, 265: 129133. doi: 10.1016/j.chemosphere.2020.129133
[72] MOORE M N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? [J]. Environment International, 2006, 32(8): 967-976. doi: 10.1016/j.envint.2006.06.014
[73] LADO TOURIÑO I, NARANJO A C, NEGRI V, et al. Coarse-grained molecular dynamics simulation of water diffusion in the presence of carbon nanotubes [J]. Journal of Molecular Graphics and Modelling, 2015, 62: 69-73. doi: 10.1016/j.jmgm.2015.09.009
[74] WANG Z, QUIK J T K, SONG L, et al. Dissipative particle dynamic simulation and experimental assessment of the impacts of humic substances on aqueous aggregation and dispersion of engineered nanoparticles [J]. Environmental Toxicology and Chemistry, 2018, 37(4): 1024-1031. doi: 10.1002/etc.4059
[75] DETTMANN L F, KÜHN O, AHMED A A. Coarse-grained molecular dynamics simulations of nanoplastics interacting with a hydrophobic environment in aqueous solution [J]. RSC Advances, 2021, 11(44): 27734-27744. doi: 10.1039/D1RA04439G
[76] FENG H R, ZHANG H Y, CAO H M, et al. Application of a novel coarse-grained soil organic matter model in the environment [J]. Environmental Science & Technology, 2018, 52(24): 14228-14234.
[77] RUIZ-MORALES Y, MULLINS O C. Coarse-grained molecular simulations to investigate asphaltenes at the oil-water interface [J]. Energy & Fuels, 2015, 29(3): 1597-1609.
[78] DING N, CHEN X F, WU C M L. Interactions between polybrominated diphenyl ethers and graphene surface: A DFT and MD investigation [J]. Environmental Science:Nano, 2014, 1(1): 55-63. doi: 10.1039/C3EN00037K
[79] CORTÉS-ARRIAGADA D, TORO-LABBÉ A. A theoretical investigation of the removal of methylated arsenic pollutants with silicon doped graphene [J]. RSC Advances, 2016, 6(34): 28500-28511. doi: 10.1039/C6RA03813A
[80] ZHANG C, LIU X D, LU X C, et al. Understanding the heterogeneous nucleation of heavy metal phyllosilicates on clay edges with first-principles molecular dynamics [J]. Environmental Science & Technology, 2019, 53(23): 13704-13712.