[1] |
WANIA F, MACKAY D. Peer reviewed: Tracking the distribution of persistent organic pollutants [J]. Environmental Science & Technology, 1996, 30(9): 390A-396A.
|
[2] |
JONES K C, de VOOGT P. Persistent organic pollutants (POPs): State of the science [J]. Environmental Pollution, 1999, 100(1/2/3): 209-221.
|
[3] |
COUSINS I T, BECK A J, JONES K C. A review of the processes involved in the exchange of semi-volatile organic compounds (SVOC) across the air-soil interface [J]. Science of the Total Environment, 1999, 228(1): 5-24. doi: 10.1016/S0048-9697(99)00015-7
|
[4] |
GLOTFELTY D E, TAYLOR A W, TURNER B C, et al. Volatilization of surface-applied pesticides from fallow soil [J]. Journal of Agricultural and Food Chemistry, 1984, 32(3): 638-643. doi: 10.1021/jf00123a053
|
[5] |
FLURY M. Experimental evidence of transport of pesticides through field soils—A review [J]. Journal of Environmental Quality, 1996, 25(1): 25-45.
|
[6] |
WILSON S C, JONES K C. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): A review [J]. Environmental Pollution, 1993, 81(3): 229-249. doi: 10.1016/0269-7491(93)90206-4
|
[7] |
李晓军, 李培军, 蔺昕, 等. 土壤中有机污染物的老化概念探讨 [J]. 应用生态学报, 2007, 18(8): 1891-1896. doi: 10.13287/j.1001-9332.2007.0294
LI X J, LI P J, LIN X, et al. About the conception of “aging” for organic contaminants in soil [J]. Chinese Journal of Applied Ecology, 2007, 18(8): 1891-1896(in Chinese). doi: 10.13287/j.1001-9332.2007.0294
|
[8] |
李晓军, 李培军, 蔺昕. 土壤中难降解有机污染物锁定机理研究进展 [J]. 应用生态学报, 2007, 18(7): 1624-1630. doi: 10.3321/j.issn:1001-9332.2007.07.035
LI X J, LI P J, LIN X. Research advances in sequestration mechanisms of hardly biodegradable organic contaminants in soil [J]. Chinese Journal of Applied Ecology, 2007, 18(7): 1624-1630(in Chinese). doi: 10.3321/j.issn:1001-9332.2007.07.035
|
[9] |
STOKES J D, PATON G I, SEMPLE K T. Behaviour and assessment of bioavailability of organic contaminants in soil: Relevance for risk assessment and remediation [J]. Soil Use and Management, 2005, 21(S2): 475-486.
|
[10] |
REID B J, JONES K C, SEMPLE K T. Bioavailability of persistent organic pollutants in soils and sediments—a perspective on mechanisms, consequences and assessment [J]. Environmental Pollution, 2000, 108(1): 103-112. doi: 10.1016/S0269-7491(99)00206-7
|
[11] |
GEVAO B, JONES K C, SEMPLE K T, et al. Peer reviewed: Nonextractable pesticide residues in soil [J]. Environmental Science & Technology, 2003, 37(7): 138A-144A.
|
[12] |
蔡蕊, 王文姬, 许航, 等. 四溴双酚A在土壤中的降解转化及残留研究进展 [J]. 环境化学, 2021, 40(1): 102-110. doi: 10.7524/j.issn.0254-6108.2020021001
CAI R, WANG W J, XU H, et al. Degradation, transformation, and residue formation of tetrabromobisphenol A (TBBPA) in soil: A review [J]. Environmental Chemistry, 2021, 40(1): 102-110(in Chinese). doi: 10.7524/j.issn.0254-6108.2020021001
|
[13] |
王松凤, 吴玄, 王麒麟, 等. 土壤中四溴双酚A不可提取态残留的降解转化 [J]. 科学通报, 2019, 64(33): 3458-3466.
WANG S F, WU X, WANG Q L, et al. The degradation and transformation of TBBPA-derived NER in soil [J]. Chinese Science Bulletin, 2019, 64(33): 3458-3466(in Chinese).
|
[14] |
GEVAO B, SEMPLE K T, JONES K C. Bound pesticide residues in soils: A review [J]. Environmental Pollution, 2000, 108(1): 3-14. doi: 10.1016/S0269-7491(99)00197-9
|
[15] |
BARRACLOUGH D, KEARNEY T, CROXFORD A. Bound residues: Environmental solution or future problem? [J]. Environmental Pollution, 2005, 133(1): 85-90. doi: 10.1016/j.envpol.2004.04.016
|
[16] |
BECK A J, WILSON S C, ALCOCK R E, et al. Kinetic constraints on the loss of organic chemicals from contaminated soils: Implications for soil-quality limits [J]. Critical Reviews in Environmental Science and Technology, 1995, 25(1): 1-43. doi: 10.1080/10643389509388473
|
[17] |
段林, 张承东, 陈威. 土壤和沉积物中疏水性有机污染物的锁定及其环境效应 [J]. 环境化学, 2011, 30(1): 242-251.
DUAN L, ZHANG C D, CHEN W. Sequestration of hydrophobic organic contaminants in soil/sediment and its environmental impact [J]. Environmental Chemistry, 2011, 30(1): 242-251(in Chinese).
|
[18] |
STEINBERG S M, PIGNATELLO J J, SAWHNEY B L. Persistence of 1, 2-dibromoethane in soils: Entrapment in intraparticle micropores [J]. Environmental Science & Technology, 1987, 21(12): 1201-1208.
|
[19] |
USEPA. CompTox Chemicals Dashboard [EB/OL]. [2021-09-01].https://comptox.epa.gov/dashboard
|
[20] |
BARRIUSO E, BENOIT P, DUBUS I G. Formation of pesticide nonextractable (bound) residues in soil: Magnitude, controlling factors and reversibility [J]. Environmental Science & Technology, 2008, 42(6): 1845-1854.
|
[21] |
BOESTEN J J T I. Proposal for field-based definition of soil bound pesticide residues [J]. Science of the Total Environment, 2016, 544: 114-117. doi: 10.1016/j.scitotenv.2015.11.122
|
[22] |
UMEH A C, DUAN L C, NAIDU R, et al. Time-dependent remobilization of nonextractable benzo[a]Pyrene residues in contrasting soils: Effects of aging, spiked concentration, and soil properties [J]. Environmental Science & Technology, 2018, 52(21): 12295-12305.
|
[23] |
UNITED NATIONS ENVIRONMENT PROGRAMME (UNEP). Stockholm Convention on Persistent Organic Pollutants [EB/OL]. [2021-09-01].
|
[24] |
EUROPEAN MONITORING AND EVALUATION PROGRAMME (EMEP). Convention on Long-Range Transboundary Air Pollution [EB/OL]. [2021-09-01].
|
[25] |
SCHÄFFER A, KÄSTNER M, TRAPP S. A unified approach for including non-extractable residues (NER) of chemicals and pesticides in the assessment of persistence [J]. Environmental Sciences Europe, 2018, 30(1): 1-14. doi: 10.1186/s12302-017-0129-6
|
[26] |
UMEH A C, DUAN L C, NAIDU R, et al. Extremely small amounts of B[a]P residues remobilised in long-term contaminated soils: A strong case for greater focus on readily available and not total-extractable fractions in risk assessment [J]. Journal of Hazardous Materials, 2019, 368: 72-80. doi: 10.1016/j.jhazmat.2019.01.030
|
[27] |
LOEFFLER D, HATZ A, ALBRECHT D, et al. Determination of non-extractable residues in soils: Towards a standardised approach [J]. Environmental Pollution, 2020, 259: 113826. doi: 10.1016/j.envpol.2019.113826
|
[28] |
BURAUEL P, FÜHR F. Formation and long-term fate of non-extractable residues in outdoor lysimeter studies [J]. Environmental Pollution, 2000, 108(1): 45-52. doi: 10.1016/S0269-7491(99)00200-6
|
[29] |
黄焕芳. 青藏高原有机氯农药的大气长距离迁移转化研究[D]. 武汉: 中国地质大学, 2018.
HUANG H F. Long-range atmospheric transport and transformations of organochlorine pesticides (OCPs) in the Qinghai-Tibet plateau[D]. Wuhan: China University of Geosciences, 2018(in Chinese).
|
[30] |
KÄSTNER M, NOWAK K M, MILTNER A, et al. (Multiple) Isotope probing approaches to trace the fate of environmental chemicals and the formation of non-extractable ‘bound’ residues [J]. Current Opinion in Biotechnology, 2016, 41: 73-82. doi: 10.1016/j.copbio.2016.05.002
|
[31] |
NOWAK K M, TELSCHER M, SEIDEL E, et al. Unraveling microbial turnover and non-extractable residues of bromoxynil in soil microcosms with 13C-isotope probing [J]. Environmental Pollution, 2018, 242: 769-777. doi: 10.1016/j.envpol.2018.07.049
|
[32] |
WEISS M, GEYER R, RUSSOW R, et al. Fate and metabolism of [15N]2, 4, 6-trinitrotoluene in soil [J]. Environmental Toxicology and Chemistry, 2004, 23(8): 1852-1860. doi: 10.1897/03-414
|
[33] |
CLARK I D, FRITZ P. Environmental isotopes in hydrogeology [M]. CRC press, 2013. DOI: 10.1201/9781482242911.
|
[34] |
RICHNOW H H, ESCHENBACH A, MAHRO B, et al. Formation of nonextractable soil residues: A stable isotope approach [J]. Environmental Science & Technology, 1999, 33(21): 3761-3767.
|
[35] |
KÄSTNER M, NOWAK K M, MILTNER A, et al. Classification and modelling of nonextractable residue (NER) formation of xenobiotics in soil - A synthesis [J]. Critical Reviews in Environmental Science and Technology, 2014, 44(19): 2107-2171. doi: 10.1080/10643389.2013.828270
|
[36] |
NORTHCOTT G L, JONES K C. Experimental approaches and analytical techniques for determining organic compound bound residues in soil and sediment [J]. Environmental Pollution, 2000, 108(1): 19-43. doi: 10.1016/S0269-7491(99)00199-2
|
[37] |
DEC J, HAIDER K, SCHÄFFER A, et al. Use of a silylation procedure and 13C-NMR spectroscopy to characterize bound and sequestered residues of cyprodinil in soil [J]. Environmental Science & Technology, 1997, 31(10): 2991-2997.
|
[38] |
HAIDER K, SPITELLER M, REICHERT K, et al. Derivatization of humic compounds: An analytical approach for bound organic residues [J]. International Journal of Environmental Analytical Chemistry, 1992, 46(1/2/3): 201-211.
|
[39] |
RICHNOW H H, ESCHENBACH A, MAHRO B, et al. The use of 13C-labelled polycyclic aromatic hydrocarbons for the analysis of their transformation in soil [J]. Chemosphere, 1998, 36(10): 2211-2224. doi: 10.1016/S0045-6535(97)10193-X
|
[40] |
RICHNOW H H, SEIFERT R, HEFTER J, et al. Metabolites of xenobiotica and mineral oil constituents linked to macromolecular organic matter in polluted environments [J]. Organic Geochemistry, 1994, 22(3/4/5): 671-IN10.
|
[41] |
RICHNOW H H, SEIFERT R, HEFTER J, et al. Organic pollutants associated with macromolecular soil organic matter: Mode of binding [J]. Organic Geochemistry, 1997, 26(11/12): 745-758.
|
[42] |
SCHWARZBAUER J, RICKING M, LITTKE R. DDT-related compounds bound to the nonextractable particulate matter in sediments of the Teltow Canal, Germany [J]. Environmental Science & Technology, 2003, 37(3): 488-495.
|
[43] |
BERNS A, VINKEN R, BERTMER M, et al. Use of 15N-depleted artificial compost in bound residue studies [J]. Chemosphere, 2005, 59(5): 649-658. doi: 10.1016/j.chemosphere.2004.10.027
|
[44] |
European Chemical Agency (ECHA). Options to address non-extractable residues in regulatory persistence assessment [EB/OL]. 2019. [2021-09-01]. https://echa.europa.eu/documents/10162/17224/bg_note_addressing_non-extractable_residues.pdf/e88d4fc6-a125-efb4-8278-d58b31a5d342
|
[45] |
ZHU X J, DSIKOWITZKY L, KUCHER S, et al. Formation and fate of point-source nonextractable DDT-related compounds on their environmental aquatic-terrestrial pathway [J]. Environmental Science & Technology, 2019, 53(3): 1305-1314.
|
[46] |
CAO S Q, WANG S F, ZHAO Y Y, et al. Fate of bisphenol S (BPS) and characterization of non-extractable residues in soil: Insights into persistence of BPS [J]. Environment International, 2020, 143: 105908. doi: 10.1016/j.envint.2020.105908
|
[47] |
GOULAS A, SABOURIN L, ASGHAR F, et al. Explaining the accelerated degradation of ciprofloxacin, sulfamethazine, and erythromycin in different soil exposure scenarios by their aqueous extractability [J]. Environmental Science and Pollution Research, 2018, 25(16): 16236-16245. doi: 10.1007/s11356-018-1834-4
|
[48] |
ESCHENBACH A, WIENBERG R, MAHRO B. Fate and stability of nonextractable residues of [14C]PAH in contaminated soils under environmental stress conditions [J]. Environmental Science & Technology, 1998, 32(17): 2585-2590.
|
[49] |
KALATHOOR R, ZEINER M, SCHMIDT B, et al. First evidence for covalent linkage of acidic metabolites of metalaxyl and DDT as non-extractable pesticide residues in soil and sediment [J]. Environmental Chemistry Letters, 2015, 13(4): 431-437. doi: 10.1007/s10311-015-0514-6
|
[50] |
KRONIMUS A, SCHWARZBAUER J, RICKING M. Analysis of non-extractable DDT-related compounds in riverine sediments of the Teltow Canal, Berlin, by pyrolysis and thermochemolysis [J]. Environmental Science & Technology, 2006, 40(19): 5882-5890.
|
[51] |
POßBERG C, SCHMIDT B, NOWAK K, et al. Quantitative identification of biogenic nonextractable pesticide residues in soil by 14C-analysis [J]. Environmental Science & Technology, 2016, 50(12): 6415-6422.
|
[52] |
SCHWARZBAUER J, RICKING M, GIEREN B, et al. Anthropogenic Organic Contaminants Incorporated into the Non-Extractable Particulate Matter of Riverine Sediments from the Teltow Canal (Berlin) [M]. Environmental Chemistry, 2005: 329-352.
|
[53] |
KÄSTNER M, TRAPP S, SCHÄFFER A. Consultancy services to support ECHA in improving the interpretation of Non-Extractable Residues (NER) in degradation assessment. Discussion paper-final report [EB/OL]. 2018. [2021-09-01]. https://echa.europa.eu/documents/10162/13630/echa_discussion_paper_en.pdf/4185cf64-8333-fad2-8ddb-85c09a560f7c
|
[54] |
BROCK A L, REIN A, POLESEL F, et al. Microbial turnover of glyphosate to biomass: Utilization as nutrient source and formation of AMPA and biogenic NER in an OECD 308 test [J]. Environmental Science & Technology, 2019, 53(10): 5838-5847.
|
[55] |
HENNECKE D, JÖHNCKE U, WIEMANN A, et al. How to characterise non-extractable residues (NER) in PBT assessment-development of a harmonised procedure to be used in routine testing[C]. Proceedings of the SETAC Europe 29th annual meeting, 2019.
|
[56] |
HARMSEN J, HENNECKE D, HUND-RINKE K, et al. Certainties and uncertainties in accessing toxicity of non-extractable residues (NER) in soil [J]. Environmental Sciences Europe, 2019, 31(1): 1-14. doi: 10.1186/s12302-018-0176-7
|
[57] |
ROBERTS T R. Non-extractable pesticide residues in soils and plants [J]. Pure and Applied Chemistry, 1984, 56(7): 945-956. doi: 10.1351/pac198456070945
|
[58] |
ALEXANDER M. Aging, bioavailability, and overestimation of risk from environmental pollutants [J]. Environmental Science & Technology, 2000, 34(20): 4259-4265.
|
[59] |
SCHAUMANN G E, BERTMER M. Do water molecules bridge soil organic matter molecule segments? [J]. European Journal of Soil Science, 2008, 59(3): 423-429. doi: 10.1111/j.1365-2389.2007.00959.x
|
[60] |
SENESI N. Binding mechanisms of pesticides to soil humic substances [J]. Science of the Total Environment, 1992, 123/124: 63-76. doi: 10.1016/0048-9697(92)90133-D
|
[61] |
KÄSTNER M, RICHNOW H H. Formation of Residues of Organic Pollutants Within the Soil Matrix — Mechanisms and Stability[M]. Treatment of Contaminated Soil, 2001: 219-251.
|
[62] |
STEVENSON F J. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties [M]. Agronomy: A series of monographs, 1982.
|
[63] |
MADIGAN M, MARTINKO J, STAHL D, et al. Brock biology of microorganisms, Pearson [M]. Benjamin Cummings, San Francisco, CA. 2011.
|
[64] |
BAS P, ARCHIMÈDE H, ROUZEAU A, et al. Fatty acid composition of mixed-rumen bacteria: Effect of concentration and type of forage [J]. Journal of Dairy Science, 2003, 86(9): 2940-2948. doi: 10.3168/jds.S0022-0302(03)73891-0
|
[65] |
RICHNOW H H, ANNWEILER E, KONING M, et al. Tracing the transformation of labelled [1-13C]phenanthrene in a soil bioreactor [J]. Environmental Pollution, 2000, 108(1): 91-101. doi: 10.1016/S0269-7491(99)00205-5
|
[66] |
MONTEIRO R T R, WALDER J M M, WIENDL F M, et al. Endosulfan-14C: degradation in soil [J]. Revista Brasileira de Ciência do Solo, 1989, 13: 163-168.
|
[67] |
MORDAUNT C J, GEVAO B, JONES K C, et al. Formation of non-extractable pesticide residues: Observations on compound differences, measurement and regulatory issues [J]. Environmental Pollution, 2005, 133(1): 25-34. doi: 10.1016/j.envpol.2004.04.018
|
[68] |
MATTHIES M, WITT J, KLASMEIER J. Determination of soil biodegradation half-lives from simulation testing under aerobic laboratory conditions: A kinetic model approach [J]. Environmental Pollution, 2008, 156(1): 99-105. doi: 10.1016/j.envpol.2007.12.040
|
[69] |
JOHNSON M D, KEINATH T M, WEBER W J. A distributed reactivity model for sorption by soils and sediments. 14. characterization and modeling of phenanthrene desorption rates [J]. Environmental Science & Technology, 2001, 35(8): 1688-1695.
|
[70] |
DING Y, LI L, WANIA F, et al. Formation of non-extractable residues as a potentially dominant process in the fate of PAHs in soil: Insights from a combined field and modeling study on the eastern Tibetan Plateau [J]. Environmental Pollution, 2020, 267: 115383. doi: 10.1016/j.envpol.2020.115383
|
[71] |
丁洋. 青藏高原东缘土壤中典型持久性有机污染物的来源与迁移转化机制 [D]. 武汉: 中国地质大学, 2021.
DING Y. Source identification and mechanisms of transportation and transformation of typical persistent organic pollutants in the soil from the Eastern Tibetan Plateau [D]. Wuhan: China University of Geosciences, 2021(in Chinese).
|
[72] |
TRAPP S, BROCK A L, NOWAK K, et al. Prediction of the formation of biogenic nonextractable residues during degradation of environmental chemicals from biomass yields [J]. Environmental Science & Technology, 2018, 52(2): 663-672.
|
[73] |
BROCK A L, KÄSTNER M, TRAPP S. Microbial growth yield estimates from thermodynamics and its importance for degradation of pesticides and formation of biogenic non-extractable residues [J]. SAR and QSAR in Environmental Research, 2017, 28(8): 629-650. doi: 10.1080/1062936X.2017.1365762
|
[74] |
NOWAK K M, MILTNER A, GEHRE M, et al. Formation and fate of bound residues from microbial biomass during 2, 4-D degradation in soil [J]. Environmental Science & Technology, 2011, 45(3): 999-1006.
|
[75] |
NOWAK K M, GIRARDI C, MILTNER A, et al. Contribution of microorganisms to non-extractable residue formation during biodegradation of ibuprofen in soil [J]. Science of the Total Environment, 2013, 445/446: 377-384. doi: 10.1016/j.scitotenv.2012.12.011
|
[76] |
BENOIT P, BARRIUSO E. Fate of 14C-ring-labeled 2, 4-D, 2, 4-dichlorophenol and 4-chlorophenol during straw composting [J]. Biology and Fertility of Soils, 1997, 25(1): 53-59. doi: 10.1007/s003740050279
|
[77] |
LAL R, PANDEY G, SHARMA P, et al. Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation [J]. Microbiology and Molecular Biology Reviews, 2010, 74(1): 58-80. doi: 10.1128/MMBR.00029-09
|
[78] |
WAIGI M G, KANG F X, GOIKAVI C, et al. Phenanthrene biodegradation by sphingomonads and its application in the contaminated soils and sediments: A review [J]. International Biodeterioration & Biodegradation, 2015, 104: 333-349.
|
[79] |
KÄSTNER M, STREIBICH S, BEYRER M, et al. Formation of bound residues during microbial degradation of [14C]anthracene in soil [J]. Applied and Environmental Microbiology, 1999, 65(5): 1834-1842. doi: 10.1128/AEM.65.5.1834-1842.1999
|
[80] |
NORTHCOTT G L, JONES K C. Partitioning, extractability, and formation of nonextractable PAH residues in soil. 1. compound differences in aging and sequestration [J]. Environmental Science & Technology, 2001, 35(6): 1103-1110.
|
[81] |
ENELL A, REICHENBERG F, EWALD G, et al. Desorption kinetics studies on PAH-contaminated soil under varying temperatures [J]. Chemosphere, 2005, 61(10): 1529-1538. doi: 10.1016/j.chemosphere.2005.04.092
|
[82] |
HAFIDI M, AMIR S, JOURAIPHY A, et al. Fate of polycyclic aromatic hydrocarbons during composting of activated sewage sludge with green waste [J]. Bioresource Technology, 2008, 99(18): 8819-8823. doi: 10.1016/j.biortech.2008.04.044
|
[83] |
LUO L, LIN S, HUANG H L, et al. Relationships between aging of PAHs and soil properties [J]. Environmental Pollution, 2012, 170: 177-182. doi: 10.1016/j.envpol.2012.07.003
|
[84] |
XING B S, PIGNATELLO J J. Dual-mode sorption of low-polarity compounds in glassy poly(vinyl chloride) and soil organic matter [J]. Environmental Science & Technology, 1997, 31(3): 792-799.
|
[85] |
KÄSTNER M, MAHRO B. Microbial degradation of polycyclic aromatic hydrocarbons in soils affected by the organic matrix of compost [J]. Applied Microbiology and Biotechnology, 1996, 44(5): 668-675. doi: 10.1007/BF00172501
|
[86] |
KOHL S D, RICE J A. The binding of contaminants to humin: A mass balance [J]. Chemosphere, 1998, 36(2): 251-261. doi: 10.1016/S0045-6535(97)10005-4
|
[87] |
WHITE J C, KELSEY J W, HATZINGER P B, et al. Factors affecting sequestration and bioavailability of phenanthrene in soils [J]. Environmental Toxicology and Chemistry, 1997, 16(10): 2040-2045. doi: 10.1002/etc.5620161008
|
[88] |
ZHAO Q, XING B S, TAI P D, et al. Effect of freeze-thawing cycles on soil aging behavior of individually spiked phenanthrene and Pyrene at different concentrations [J]. Science of the Total Environment, 2013, 444: 311-319. doi: 10.1016/j.scitotenv.2012.11.062
|
[89] |
ANDRÉA M M, TOMITA R Y, LUCHINI L C, et al. Laboratory studies on volatilization and mineralization of 14c-p, p'-DDT in soil, release of bound residues and dissipation from solid surfaces [J]. Journal of Environmental Science and Health, Part B, 1994, 29(1): 133-139. doi: 10.1080/03601239409372865
|
[90] |
ZHU X J, SONG X, SCHWARZBAUER J. First insights into the formation and long-term dynamic behaviors of nonextractable perfluorooctanesulfonate and its alternative 6: 2 chlorinated polyfluorinated ether sulfonate residues in a silty clay soil [J]. Science of the Total Environment, 2021, 761: 143230. doi: 10.1016/j.scitotenv.2020.143230
|
[91] |
KHAN S U, IVARSON K C. Microbiological release of unextracted (bound) residues from an organic soil treated with prometryn [J]. Journal of Agricultural and Food Chemistry, 1981, 29(6): 1301-1303. doi: 10.1021/jf00108a052
|
[92] |
WEIß M, GEYER R, GÜNTHER T, et al. Fate and stability of 14c-labeled 2, 4, 6-trinitrotoluene in contaminated soil following microbial bioremediation processes [J]. Environmental Toxicology and Chemistry, 2004, 23(9): 2049. doi: 10.1897/03-143
|
[93] |
ULRICH N, ENDO S, BROWN T, et al. UFZ-LSER database v 3.2.1 [Internet], Leipzig, Germany: Helmholtz Centre for Environmental Research-UFZ [EB/OL]. 2017. [2021-09-01].http://www.ufz.de/lserd
|
[94] |
GOSS K U. Predicting the equilibrium partitioning of organic compounds using just one linear solvation energy relationship (LSER) [J]. Fluid Phase Equilibria, 2005, 233(1): 19-22. doi: 10.1016/j.fluid.2005.04.006
|
[95] |
ORTEGA-CALVO J J, HARMSEN J, PARSONS J R, et al. From bioavailability science to regulation of organic chemicals [J]. Environmental Science & Technology, 2015, 49(17): 10255-10264.
|
[96] |
UMEH A C, DUAN L C, NAIDU R, et al. Residual hydrophobic organic contaminants in soil: Are they a barrier to risk-based approaches for managing contaminated land? [J]. Environment International, 2017, 98: 18-34. doi: 10.1016/j.envint.2016.09.025
|