[1] |
GOUW J D, WARNEKE C. Measurements of volatile organic compounds in the earth’s atmosphere using proton-transfer-reaction mass spectrometry[J]. Mass Spectrometry Reviews, 2007, 26(2): 223-257. doi: 10.1002/mas.20119
|
[2] |
LINDINGER W, HANSEL A, JORDAN A. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research[J]. International Journal of Mass Spectrometry and Ion Processes, 1998, 173(3): 191-241. doi: 10.1016/S0168-1176(97)00281-4
|
[3] |
JANG M, CZOSCHKE N M, LEE S, et al. Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions[J]. Science, 2002, 298(5594): 814-817. doi: 10.1126/science.1075798
|
[4] |
JANG M, CZOSCHKE N M, NORTHCROSS A L. Atmospheric organic aerosol production by heterogeneous acid-catalyzed reactions[J]. Chemphyschem, 2004, 5(11): 1646-1661. doi: 10.1002/cphc.200301077
|
[5] |
TANSEL B, INANLOO B. Odor impact zones around landfills: Delineation based on atmospheric conditions and land use characteristics[J]. Waste Management, 2019, 88: 39-47. doi: 10.1016/j.wasman.2019.03.028
|
[6] |
JIN P, GU Y G, SHI X, et al. Non-negligible greenhouse gases from urban sewer system[J]. Biotechnology for Biofuels, 2019, 12(1): 1-11. doi: 10.1186/s13068-018-1346-y
|
[7] |
NIE E, ZHENG G, GAO D, et al. Emission characteristics of VOCs and potential ozone formation from a full-scale sewage sludge composting plant[J]. Science of the Total Environment, 2019, 659: 664-672. doi: 10.1016/j.scitotenv.2018.12.404
|
[8] |
EWING R G, WALTMAN M J, ATKINSON D A, et al. The vapor pressures of explosives[J]. Trends in Analytical Chemistry, 2013, 42: 35-48. doi: 10.1016/j.trac.2012.09.010
|
[9] |
QIN M R, CHEN Z M, SHEN H Q, et al. Impacts of heterogeneous reactions to atmospheric peroxides: Observations and budget analysis study[J]. Atmospheric Environment, 2018, 183: 144-153. doi: 10.1016/j.atmosenv.2018.04.005
|
[10] |
ZIMMERMANN R. Photo ionisation in mass spectrometry: Light, selectivity and molecular ions[J]. Analytical and Bioanalytical Chemistry, 2013, 405(22): 6901-6905. doi: 10.1007/s00216-013-7187-4
|
[11] |
SYAGE J A, CAI S S, LI J W, et al. Direct sampling of chemical weapons in water by photoionization mass spectrometry[J]. Analytical Chemistry, 2006, 78(9): 2967-2976. doi: 10.1021/ac0518506
|
[12] |
TSURUGA S, SUZUKI T, TAKATSUDO Y, et al. On-line monitoring system of P5CDF homologues in waste incineration plants using VUV-SPI-IT-TOFMS[J]. Environmental Science and Technology, 2007, 41(10): 3684-3688. doi: 10.1021/es0614924
|
[13] |
SARAJI-BOZORGZAD M, GEISSLER R, STREIBEL T, et al. Thermogravimetry coupled to single photon ionization quadrupole mass spectrometry: A tool to investigate the chemical signature of thermal decomposition of polymeric materials[J]. Analytical Chemistry, 2008, 80(9): 3393-3403. doi: 10.1021/ac702599y
|
[14] |
FISCHER M, WOHLFAHRT S, VARGA J, et al. Evolved gas analysis by single photon ionization-mass spectrometry[J]. Journal of Thermal Analysis and Calorimetry, 2014, 116(3): 1461-1469. doi: 10.1007/s10973-014-3830-3
|
[15] |
YUAN B, KOSS A, WARNEKE C, et al. A high-resolution time-of-flight chemical ionization mass spectrometer utilizing hydronium ions (H3O+ ToF-CIMS) for measurements of volatile organic compounds in the atmosphere[J]. Atmospheric Measurement Techniques, 2016, 9(6): 2735-2752. doi: 10.5194/amt-9-2735-2016
|
[16] |
BLAKE R S, PATEL M, MONKS P S, et al. Aldehyde and ketone discrimination and quantification using two-stage proton transfer reaction mass spectrometry[J]. International Journal of Mass Spectrometry, 2008, 278(1): 15-19. doi: 10.1016/j.ijms.2008.07.010
|
[17] |
HANSEL A, JORDAN A, HOLZINGER R, et al. Proton transfer reaction mass spectrometry: On-line trace gas analysis at the ppb level[J]. International Journal of Mass Spectrometry and Ion Processes, 1995, 149-150: 609-619. doi: 10.1016/0168-1176(95)04294-U
|
[18] |
LINDINGER W, HANSEL A, JORDAN A. Proton-transfer-reaction mass spectrometry (PTR-MS): On-line monitoring of volatile organic compounds at pptv levels[J]. Chemical Society Reviews, 1998, 27(5): 347-354. doi: 10.1039/a827347z
|
[19] |
SULZER P, HARTUNGEN E, HANEL G, et al. A proton transfer reaction-quadrupole interface time-of-flight mass spectrometer (PTR-QiTOF): High speed due to extreme sensitivity[J]. International Journal of Mass Spectrometry, 2014, 368: 1-5. doi: 10.1016/j.ijms.2014.05.004
|
[20] |
HANLEY L, ZIMMERMANN R. Light and molecular ions: The emergence of vacuum UV single-photon ionization in MS[J]. Analytical Chemistry, 2009, 81(11): 4174-4182. doi: 10.1021/ac8013675
|
[21] |
HUA L, WU Q H, HOU K Y, et al. Single photon ionization and chemical ionization combined ion source based on a vacuum ultraviolet lamp for orthogonal acceleration time-of-flight mass spectrometry[J]. Analytical Chemistry, 2011, 83(13): 5309-5316. doi: 10.1021/ac200742r
|
[22] |
GIULIANI A, GIORGETTA J L, RICAUD J P, et al. Atmospheric pressure photoionization using tunable VUV synchrotron radiation[J]. Nuclear Instruments and Methods in Physics Research, Section B:Beam Interactions with Materials and Atoms, 2012, 279: 114-117.
|
[23] |
YAKIMOV S A, KNYAZ'KOV D A, BOL'SHOVA T A, et al. Investigation of the effect of ethanol additives on the structure of low-pressure ethylene flames by photoionization mass spectrometry[J]. Combustion, Explosion and Shock Waves, 2012, 48(5): 609-619. doi: 10.1134/S0010508212050127
|
[24] |
MILOSAVLJEVIC A R, NICOLAS C, GIL J F, et al. VUV synchrotron radiation: A new activation technique for tandem mass spectrometry[J]. Journal of Synchrotron Radiation, 2012, 19(2): 174-178. doi: 10.1107/S0909049512001057
|
[25] |
ZHOU Z Y, GUO H J, QI F. Recent developments in synchrotron vacuum ultraviolet photoionization coupled to mass spectrometry[J]. Trends in Analytical Chemistry, 2011, 30(9): 1400-1409. doi: 10.1016/j.trac.2011.05.007
|
[26] |
MULLEN C, IRWIN A, POND B V, et al. Detection of explosives and explosives-related compounds by single photon laser ionization time-of-flight mass spectrometry[J]. Analytical Chemistry, 2006, 78(11): 3807-3814. doi: 10.1021/ac060190h
|
[27] |
STREIBEL T, WEH J, MITSCHKE S, et al. Thermal desorption/pyrolysis coupled with photoionization time-of-flight mass spectrometry for the analysis of molecular organic compounds and oligomeric and polymeric fractions in urban particulate matter[J]. Analytical Chemistry, 2006, 78(15): 5354-5361. doi: 10.1021/ac060227y
|
[28] |
VAIKKINEN A, HAAPALA M, KERSTEN H, et al. Comparison of direct and alternating current vacuum ultraviolet lamps in atmospheric pressure photoionization[J]. Analytical Chemistry, 2012, 84(3): 1408-1415. doi: 10.1021/ac2024574
|
[29] |
WU Q H, HUA L, HOU K Y, et al. A combined single photon ionization and photoelectron ionization source for orthogonal acceleration time-of-flight mass spectrometer[J]. International Journal of Mass Spectrometry, 2010, 295(1/2): 60-64.
|
[30] |
CHEN P, HOU K Y, HUA L, et al. Quasi-trapping chemical ionization source based on a commercial VUV lamp for time-of-flight mass spectrometry[J]. Analytical Chemistry, 2014, 86(3): 1332-1336. doi: 10.1021/ac403132k
|
[31] |
LI A, CHEN M Z, GUO W F, et al. Detection of polycyclic aromatic hydrocarbons in a soil sample with photon ionization technique[J]. Applied Mechanics and Materials, 2013, 271: 112-115.
|
[32] |
MUHLBERGER F, WIESER J, MOROZOV A, et al. Single-photon ionization quadrupole mass spectrometry with an electron beam pumped excimer light source[J]. Analytical Chemistry, 2005, 77(7): 2218-2226. doi: 10.1021/ac048319f
|
[33] |
MUHLBERGER F, STREIBEL T, WIESER J, et al. Single photon ionization time-of-flight mass spectrometry with a pulsed electron beam pumped excimer VUV lamp for on-line gas analysis: Setup and first results on cigarette smoke and human breath[J]. Analytical Chemistry, 2005, 77(22): 7408-7414. doi: 10.1021/ac051194+
|
[34] |
MUHLBERGER F, WIESER J, ULRICH A, et al. Single photon ionization (SPI) via incoherent VUV-excimer light: Robust and compact time-of-flight mass spectrometer for on-line, real-time process gas analysis[J]. Analytical Chemistry, 2002, 74(15): 3790-3801. doi: 10.1021/ac0200825
|
[35] |
MUHLBERGER F, SARAJI-BOZORGZAD M, GONIN M, et al. Compact ultrafast orthogonal acceleration time-of-flight mass spectrometer for on-line gas analysis by electron impact ionization and soft single photon ionization using an electron beam pumped rare gas excimer lamp as VUV-light source[J]. Analytical Chemistry, 2007, 79(21): 8118-8124. doi: 10.1021/ac071217f
|
[36] |
WANG Y, JIANG J C, HUA L, et al. High-pressure photon ionization source for TOFMS and its application for online breath analysis[J]. Analytical Chemistry, 2016, 88(18): 9047-9055. doi: 10.1021/acs.analchem.6b01707
|
[37] |
WAN N B, JIANG J C, HU F, et al. Nonuniform electric field-enhanced in-source declustering in high-pressure photoionization/photoionization-induced chemical ionization mass spectrometry for operando catalytic reaction monitoring[J]. Analytical Chemistry, 2021, 93(4): 2207-2214. doi: 10.1021/acs.analchem.0c04081
|
[38] |
LIU C Y, ZHU Y N, ZHOU Z Y, et al. Ultrasonic nebulization extraction/low pressure photoionization mass spectrometry for direct analysis of chemicals in matrices[J]. Analytica Chimica Acta, 2015, 891: 203-210. doi: 10.1016/j.aca.2015.08.010
|
[39] |
ZHU Z X, WANG J, QIU K Q, et al. Note: A novel vacuum ultraviolet light source assembly with aluminum-coated electrodes for enhancing the ionization efficiency of photoionization mass spectrometry[J]. Review of Scientific Instruments, 2014, 85(4): 046110. doi: 10.1063/1.4871796
|
[40] |
SUN W Q, SHU J N, ZHANG P, et al. Real-time monitoring of trace-level VOCs by an ultrasensitive lamp-based VUV photoionization mass spectrometer[J]. Atmospheric Measurement Techniques, 2015, 8(11): 4637-4643. doi: 10.5194/amt-8-4637-2015
|
[41] |
LI Z, XU C, SHU J N. Detection of sub-pptv benzene, toluene, and ethylbenzene via low-pressure photoionization mass spectrometry[J]. Analytica Chimica Acta, 2017, 964: 134-141. doi: 10.1016/j.aca.2017.01.065
|
[42] |
U. S. EPA. Method TO-15: Determination of volatile organic compounds in air collected in specially-prepared canisters ans analysed by gas chromatography mass spectrometry (GC/MS)[S]. U. S. EPA, 1999.
|
[43] |
KRECHMER J, LOPEZ-HILFIKER F, KOSS A, et al. Evaluation of a new reagent-ion source and focusing ion-molecule reactor for use in proton-transfer-reaction mass spectrometry[J]. Analytical Chemistry, 2018, 90(20): 12011-12018. doi: 10.1021/acs.analchem.8b02641
|
[44] |
COWLEY N J, LAITENBERGER P, LIU B, et al. Evaluation of a new analyser for rapid measurement of blood propofol concentration during cardiac surgery[J]. Anaesthesia, 2012, 67(8): 870-874. doi: 10.1111/j.1365-2044.2012.07151.x
|
[45] |
XIAO Y, WANG X, LI E Y, et al. Rapid determination of intraoperative blood propofol concentration in operating theatre by dopant-enhanced neutral release and negative photoionization ion mobility spectrometry[J]. Analytica Chimica Acta, 2020, 1098: 47-55. doi: 10.1016/j.aca.2019.11.011
|