[1] |
中华人民共和国国家统计局.2015中国统计年鉴[M].北京: 中国统计出版社,2015.
|
[2] |
中华人民共和国国家统计局.2016中国统计年鉴[M].北京: 中国统计出版社,2016.
|
[3] |
中华人民共和国国家统计局.2017中国统计年鉴[M].北京: 中国统计出版社,2017.
|
[4] |
中华人民共和国国家统计局.2018中国统计年鉴[M].北京: 中国统计出版社,2018.
|
[5] |
中华人民共和国国家统计局.2019中国统计年鉴[M].北京: 中国统计出版社,2019.
|
[6] |
中华人民共和国国家统计局.2020中国统计年鉴[M].北京: 中国统计出版社,2020.
|
[7] |
CAMP J S, ABKOWITZ M D, LEBOEUF E J. Inland waterway resource and spill management needs in Southeastern USA[J]. Disaster Prevention & Management, 2010, 19(4): 483 − 497.
|
[8] |
ROGERS K M, NICOLINI E, GAUTHIER V. Identifying source and formation altitudes of nitrates in drinking water from Réunion Island, France, using a multi-isotopic approach[J]. Journal of Contaminant Hydrology, 2012, 138: 93 − 103.
|
[9] |
ANSHUMALI, RAMANATHAN A L. Seasonal variation in the major ion chemistry of Pandoh Lake, Mandi District, Himachal Pradesh, India[J]. Applied Geochemistry, 2007, 22(8): 1736 − 1747. doi: 10.1016/j.apgeochem.2007.03.045
|
[10] |
NAS B, BERKTAY A. Groundwater contamination by nitrates in the city of Konya, (Turkey): A GIS perspective[J]. Journal of Environmental Management, 2006, 79(1): 30 − 37. doi: 10.1016/j.jenvman.2005.05.010
|
[11] |
SHRESTHA S, KAZAMA F. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan[J]. Environmental Modelling & Software, 2007, 22(4): 464 − 475.
|
[12] |
INAMDAR S, SINGH S, DUTTA S, et al. Fluorescence characteristics and sources of dissolved organic matter for stream water during storm events in a forested mid-Atlantic watershed[J]. Journal of Geophysical Research-Biogeosciences, 2011, 116: G03043.
|
[13] |
徐志伟, 张心昱, 于贵瑞, 等. 中国水体硝酸盐氮氧双稳定同位素溯源研究进展[J]. 环境科学, 2014, 35(8): 3230 − 3238. doi: 10.13227/j.hjkx.2014.08.056
|
[14] |
VUAI S A, NAKAMURA K, TOKUYAMA A. Geochemical characteristics of runoff from acid sulfate soils in the northern area of Okinawa Island, Japan[J]. Geochemical Journal, 2003, 37(5): 579 − 592. doi: 10.2343/geochemj.37.579
|
[15] |
PRAHARAJ T, SWAIN S P, POWELL M A, et al. Delineation of groundwater contamination around an ash pond: geochemical and GIS approach[J]. Environment International, 2002, 27(8): 631 − 638. doi: 10.1016/S0160-4120(01)00121-0
|
[16] |
Bu H M, Tan X A, Li S Y, et al. Temporal and spatial variations of water quality in the Jinshui River of the South Qinling Mts. China[J]. Ecotoxicology and Environmental Safety, 2010, 73(5): 907 − 913. doi: 10.1016/j.ecoenv.2009.11.007
|
[17] |
史斌. 水污染动态预警监测模型构建与应急处置工程风险分析[D]. 哈尔滨: 哈尔滨工业大学, 2018.
|
[18] |
吕清, 顾俊强, 徐诗琴, 等. 水纹预警溯源技术在地表水水质监测的应用[J]. 中国环境监测, 2015, 31(1): 152 − 156. doi: 10.3969/j.issn.1002-6002.2015.01.030
|
[19] |
朱炜玉, 史斌, 姜继平, 等. 基于水质时间序列异常检测的动态预警方法[J]. 环境科学与技术, 2018, 41(12): 131 − 137. doi: 10.19672/j.cnki.1003-6504.2018.12.019
|
[20] |
DARIANE A B, AZIMI S. Streamflow forecasting by combining neural networks and fuzzy models using advanced methods of input variable selection[J]. Journal of Hydroinformatics, 2018, 20(2): 520 − 532. doi: 10.2166/hydro.2017.076
|
[21] |
周俊临. 基于数据挖掘的分布式异常检测[D]. 成都: 电子科技大学, 2010.
|
[22] |
BYER D. Real-time detection of intentional chemical contamination - In the distribution system[J]. Journal American Water Works Association, 2005, 97(7): 130 − 133. doi: 10.1002/j.1551-8833.2005.tb10938.x
|
[23] |
BARZEGAR R, ADAMOWSKI J, MOGHADDAM A A. Application of wavelet-artificial intelligence hybrid models for water quality prediction: a case study in Aji-Chay River, Iran[J]. Stochastic Environmental Research and Risk Assessment, 2016, 30(7): 1797 − 1819. doi: 10.1007/s00477-016-1213-y
|
[24] |
HIMANSHU S K, PANDEY A, YADAV B. Ensemble wavelet-support vector machine approach for prediction of suspended sediment load using hydrometeorological data[J]. Journal of Hydrologic Engineering, 2017, 22(7): 05017006. doi: 10.1061/(ASCE)HE.1943-5584.0001516
|
[25] |
MOHAMMADPOUR R, SHAHARUDDIN S, CHANG C K, et al. Prediction of water quality index in constructed wetlands using support vector machine[J]. Environmental Science & Pollution Research, 2015, 22(8): 6208 − 6219.
|
[26] |
毛莺池, 齐海, 接青, 等. M-TAEDA: 多变量水质参数时序数据异常事件检测算法[J]. 计算机应用, 2017, 37(1): 138 − 144. doi: 10.11772/j.issn.1001-9081.2017.01.0138
|
[27] |
SINGH K P, MALIK A, MOHAN D, et al. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study - Science Direct[J]. Water Research, 2004, 38(18): 3980 − 3992. doi: 10.1016/j.watres.2004.06.011
|
[28] |
NAGHIBI S A, POURGHASEMI H R, ABBASPOUR K. A comparison between ten advanced and soft computing models for groundwater qanat potential assessment in Iran using R and GIS[J]. Theoretical and Applied Climatology, 2018, 131(3): 967-984.
|
[29] |
PHUNG D, HUANG C, RUTHERFORD S, et al. Temporal and spatial assessment of river surface water quality using multivariate statistical techniques: a study in Can Tho City, a Mekong Delta area, Vietnam[J]. Environmental Monitoring and Assessment, 2015, 187(5):1-13.
|
[30] |
RODE M, WADE A J, COHEN M J, et al. Sensors in the Stream: The High-Frequency Wave of the Present[J]. Environmental Science and Technology, 2016, 50(19): 10297 − 10307. doi: 10.1021/acs.est.6b02155
|
[31] |
陈国庆, 顾正建, 朱拓, 等. 太湖水荧光光谱分析[J]. 中国环境监测, 2006(6): 16 − 18. doi: 10.3969/j.issn.1002-6002.2006.06.004
|
[32] |
MOSTOFA K, F WU, LIU C Q, et al. Characterization of Nanming River (southwestern China) sewerage-impacted pollution using an excitation-emission matrix and PARAFAC[J]. Limnology, 2010, 11(3): 217 − 231. doi: 10.1007/s10201-009-0306-4
|
[33] |
CARSTEA E M, BAKER A, BIEROZA M, et al. Continuous fluorescence excitation–emission matrix monitoring of river organic matter[J]. Water Research, 2010, 44(18): 5356 − 5366. doi: 10.1016/j.watres.2010.06.036
|
[34] |
HAMBLY A C, HENDERSON R K, STOREY M V, et al. Fluorescence monitoring at a recycled water treatment plant and associated dual distribution system – Implications for cross-connection detection[J]. Water Research, 2010, 44(18): 5323 − 5333. doi: 10.1016/j.watres.2010.06.003
|
[35] |
HENDERSON R K, BAKER A, MURPHY K R, et al. Fluorescence as a potential monitoring tool for recycled water systems: A review[J]. Water Research, 2009, 43(4): 863 − 881. doi: 10.1016/j.watres.2008.11.027
|
[36] |
GALINHA C F, CARVALHO G, PORTUGAL C, et al. Two-dimensional fluorescence as a fingerprinting tool for monitoring wastewater treatment systems[J]. Journal of Chemical Technology & Biotechnology, 2011, 86(7): 985 − 992.
|
[37] |
WU J, PONS M N, POTIER O. Wastewater fingerprinting by UV-visible and synchronous fluorescence spectroscopy[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2006, 53(4-5): 449 − 456.
|
[38] |
王忠东, 武金玲, 李东明, 等. 基于荧光机制的光纤式农药残留测量系统[J]. 中国激光, 2006(7): 1003 − 1008. doi: 10.3321/j.issn:0258-7025.2006.07.029
|
[39] |
陈茂福, 吴静, 律严励, 等. 城市污水的三维荧光指纹特征[J]. 光学学报, 2008(3): 578 − 582. doi: 10.3321/j.issn:0253-2239.2008.03.033
|
[40] |
吴静, 曹知平, 谢超波, 等. 石化废水的三维荧光光谱特征[J]. 光谱学与光谱分析, 2011, 31(9): 2437 − 2441.
|
[41] |
李宏斌, 刘文清, 张玉钧, 等. 三维荧光光谱技术在水监测中的应用[J]. 光学技术, 2006(1): 27 − 30. doi: 10.3321/j.issn:1002-1582.2006.01.033
|
[42] |
戴春燕, 吴静, 向熙, 等. 工业废水为主的城市污水的荧光指纹特征[J]. 光谱学与光谱分析, 2013, 33(2): 414 − 417. doi: 10.3964/j.issn.1000-0593(2013)02-0414-04
|
[43] |
王宝玉. 基于谱分析与荧光响应的水污染预警溯源技术基础研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
[44] |
汤久凯, 吴静, 程澄, 等. 某半合成青霉素制药废水的水质指纹特性[J]. 光谱学与光谱分析, 2016, 36(11): 3602 − 3607.
|
[45] |
胡远, 柴一荻, 刘博, 等. 某兽药抗生素废水的荧光水质指纹特征[J]. 光谱学与光谱分析, 2018, 38(10): 3144 − 3147.
|
[46] |
吴静, 赵宇菲, 曹炯准, 等. 某头孢制药废水的水质指纹特征[J]. 光谱学与光谱分析, 2016, 36(4): 1075 − 1079.
|
[47] |
吴静, 崔硕, 苏伟, 等. 北京城市水体的三维荧光特征[J]. 光谱学与光谱分析, 2011, 31(6): 1562 − 1566. doi: 10.3964/j.issn.1000-0593(2011)06-1562-05
|
[48] |
吴静, 谢超波, 曹知平, 等. 炼油废水的荧光指纹特征[J]. 光谱学与光谱分析, 2012, 32(2): 415 − 419. doi: 10.3964/j.issn.1000-0593(2012)02-0415-05
|
[49] |
王士峰, 吴静, 程澄, 等. 某印染废水的水质指纹特征[J]. 光谱学与光谱分析, 2015, 35(12): 3440 − 3443.
|
[50] |
张梦怡, 付海娟, 池勇志. 指纹图谱法解析涂装废水中的有机污染物[J]. 山西建筑, 2021, 47(7): 166 − 169. doi: 10.13719/j.cnki.1009-6825.2021.07.059
|
[51] |
谢超波, 吴静, 曹知平, 等. 大流量河道的水质荧光指纹变化[J]. 光谱学与光谱分析, 2014, 34(3): 695 − 697. doi: 10.3964/j.issn.1000-0593(2014)03-0695-03
|
[52] |
刘传旸, 柴一荻, 徐宪根, 等. 南方某河水质荧光指纹特征及污染溯源[J]. 光谱学与光谱分析, 2021, 41(7): 2142 − 2147.
|
[53] |
MOSTOFA K, YOSHIOKA T, KONOHIRA E, et al. Three-dimensional fluorescence as a tool for investigating the dynamics of dissolved organic matter in the Lake Biwa watershed[J]. Limnology, 2005, 6(2): 101 − 115. doi: 10.1007/s10201-005-0149-6
|
[54] |
BAKER A. Fluorescence excitation - emission matrix characterization of some sewage-impacted rivers[J]. Environmental Science & Technology, 2001, 35(5): 948 − 953.
|
[55] |
周慧平, 高燕, 尹爱经. 水污染源解析技术与应用研究进展[J]. 环境保护科学, 2014, 40(6): 19 − 24. doi: 10.3969/j.issn.1004-6216.2014.06.004
|
[56] |
BAKER A. Fluorescence excitation - Emission matrix characterization of river waters impacted by a tissue mill effluent[J]. Environmental Science & Technology, 2002, 36(7): 1377 − 1382.
|
[57] |
BORISOVER M, LAOR Y, SAADI I, et al. Tracing organic footprints from industrial effluent discharge in recalcitrant riverine chromophoric dissolved organic matter[J]. Water Air and Soil Pollution, 2011, 222(1-4): 255 − 269. doi: 10.1007/s11270-011-0821-x
|
[58] |
NADEN P S, OLD G H, ELIOT-LAIZE C, et al. Assessment of natural fluorescence as a tracer of diffuse agricultural pollution from slurry spreading on intensely-farmed grasslands[J]. Water Research, 2009, 44(6): 1701 − 1712.
|
[59] |
CARSTEA E M, GHERVASE L, PAVELESCU G, et al. Real-time monitoring of an urban river contaminated with petroleum products[J]. Environmental Engineering and Management Journal, 2012, 11(2): 279 − 283. doi: 10.30638/eemj.2012.035
|
[60] |
杨子臣. 基于三维荧光谱技术的矿物油种类鉴别[D]. 秦皇岛: 燕山大学, 2013.
|
[61] |
陈友明. 基于纹理分析的指纹图像预处理算法研究[J]. 电脑知识与技术, 2009, 5(30): 8499 − 8501.
|
[62] |
徐梅花. 指纹图像奇异点检测及特征提取算法研究[D]. 太原: 中北大学, 2010.
|
[63] |
汤海林. 指纹图像奇异点提取算法的研究与实现[J]. 电脑开发与应用, 2013, 26(7): 7 − 9. doi: 10.3969/j.issn.1003-5850.2013.07.003
|
[64] |
程伟平, 廖锡健. 基于逆向概率密度函数的一维污染源排放重构[J]. 水动力学研究与进展A辑, 2011, 26(4): 460 − 469. doi: 10.3969/j.issn1000-4874.2011.04.010
|
[65] |
DATTA B, CHAKRABARTY D, DHAR A. Optimal dynamic monitoring network design and identification of unknown groundwater pollution sources[J]. Water Resources Management, 2009, 23(10): 2031 − 2049. doi: 10.1007/s11269-008-9368-z
|
[66] |
朱嵩, 刘国华, 王立忠, 等. 水动力-水质耦合模型污染源识别的贝叶斯方法[J]. 四川大学学报(工程科学版), 2009, 41(5): 30 − 35. doi: 10.15961/j.jsuese.2009.05.003
|
[67] |
王家彪, 雷晓辉, 廖卫红, 等. 基于耦合概率密度方法的河渠突发水污染溯源[J]. 水利学报, 2015, 46(11): 1280 − 1289. doi: 10.13243/j.cnki.slxb.20150405
|