[1] |
EMENIKE P C, NERIS J B, TENEBE I T, et al. Estimation of some trace metal pollutants in River Atuwara southwestern Nigeria and spatio-temporal human health risks assessment[J]. Chemosphere, 2020, 239: 124770. doi: 10.1016/j.chemosphere.2019.124770
|
[2] |
吴锋, 刘志, 周奔, 等. 单室MFC型生物毒性传感器对重金属离子的检测研究[J]. 环境科学, 2010, 31(7): 1596-1600.
|
[3] |
乔军晶. 基于微生物燃料电池的重金属质量浓度检测技术的电化学参数选择与优化[D]. 上海: 华东理工大学, 2016.
|
[4] |
LIU Y, TUO A X, JIN X J, et al. Quantifying biodegradable organic matter in polluted water on the basis of coulombic yield[J]. Talanta, 2018, 176: 485-491. doi: 10.1016/j.talanta.2017.08.029
|
[5] |
LOGAN B E, REGAN J M. Microbial fuel cells: Challenges and applications[J]. Environmental Science & Technology, 2006, 40(17): 5172-5180.
|
[6] |
SU L, JIA W Z, HOU C J, et al. Microbial biosensors: A review[J]. Biosensors & Bioelectronics, 2011, 26(5): 1788-1799.
|
[7] |
MOORE J. Microbial biosensors: A review[J]. Journal of Microbial & Biochemical Technology, 2021, 13(6): 475.
|
[8] |
STEIN N E, KEESMAN K J, HAMELERS H V M, et al. Kinetic models for detection of toxicity in a microbial fuel cell based biosensor[J]. Biosensors & Bioelectronics, 2011, 26(7): 3115-3120.
|
[9] |
ABREVAYA X C, SACCO N J, BONETTO M C, et al. Analytical applications of microbial fuel cells. Part I: Biochemical oxygen demand[J]. Biosensors & Bioelectronics, 2015, 63(1): 580-590.
|
[10] |
HILL A, TAIT S, BAILLIE C, et al. Microbial electrochemical sensors for volatile fatty acid measurement in high strength wastewaters: A review[J]. Biosensors & Bioelectronics, 2020, 165: 112409.
|
[11] |
JIANG Y, LIANG P, LIU P, et al. A novel microbial fuel cell sensor with biocathode sensing element[J]. Biosensors & Bioelectronics, 2017, 94: 344-350.
|
[12] |
SPURR M W A, YU E H, SCOTT K, et al. A microbial fuel cell sensor for unambiguous measurement of organic loading and definitive identification of toxic influents[J]. Environmental Science:Water Research & Technology, 2020, 6(3): 612-621.
|
[13] |
ZHAO T, XIE B, YI Y, et al. Sequential flowing membrane-less microbial fuel cell using bioanode and biocathode as sensing elements for toxicity monitoring[J]. Bioresourse Technology, 2019, 276: 276-280. doi: 10.1016/j.biortech.2019.01.009
|
[14] |
GONZALEZ M J, CORTON E, FIGUEREDO F. Sorting the main bottlenecks to use paper-based microbial fuel cells as convenient and practical analytical devices for environmental toxicity testing[J]. Chemosphere, 2021, 265: 129101. doi: 10.1016/j.chemosphere.2020.129101
|
[15] |
GAO Y Y, WANG S, YIN F J, et al. Enhancing sensitivity of microbial fuel cell sensors for low concentration biodegradable organic matter detection: Regulation of substrate concentration, anode area and external resistance[J]. Journal of Environmental Sciences, 2021, 101(3): 227-235.
|
[16] |
YANG S H, LEE K B, KONG B, et al. Biomimetic encapsulation of individual cells with silica[J]. Angewandte Chemie, 2009, 48(48): 9160-9163. doi: 10.1002/anie.200903010
|
[17] |
FAKHRULLIN R F, MINULLINA R T. Hybrid cellular-inorganic core-shell microparticles: Encapsulation of individual living cells in calcium carbonate microshells[J]. Langmuir, 2009, 25(12): 6617-6621. doi: 10.1021/la901395z
|
[18] |
ZAMALEEVA A I, SHARIPOVA I R, PORFIREVA A V, et al. Polyelectrolyte-mediated assembly of multiwalled carbon nanotubes on living yeast cells[J]. Langmuir, 2010, 26(4): 2671-2679. doi: 10.1021/la902937s
|
[19] |
JIANG Y, LIANG P, LIU P P, et al. A cathode-shared microbial fuel cell sensor array for water alert system[J]. International Journal of Hydrogen Energy, 2016, 42(7): 4342-4348.
|
[20] |
WU W G, LESNIK K L, XU S T, et al. Impact of tobramycin on the performance of microbial fuel cell[J]. Microbial Cell Factories, 2014, 13: 91. doi: 10.1186/s12934-014-0091-6
|
[21] |
DAVILA D, ESQUIVEL J P, SABATE N, et al. Silicon-based microfabricated microbial fuel cell toxicity sensor[J]. Biosensors & Bioelectronics, 2011, 26(5): 2426-2430.
|
[22] |
MODIN O, WILÉN B M. A novel bioelectrochemical BOD sensor operating with voltage input[J]. Water Research, 2012, 46(18): 6113-6120. doi: 10.1016/j.watres.2012.08.042
|
[23] |
JIN X, LI X, ZHAO N, et al. Bio-electrolytic sensor for rapid monitoring of volatile fatty acids in anaerobic digestion process[J]. Water Research, 2017, 111: 74-80. doi: 10.1016/j.watres.2016.12.045
|
[24] |
XU Z H, LIU B C, DONG Q C, et al. Flat microliter membrane-based microbial fuel cell as “on-line sticker sensor” for self-supported in situ monitoring of wastewater shocks[J]. Bioresource Technology, 2015, 197: 244-251. doi: 10.1016/j.biortech.2015.08.081
|
[25] |
MOON H, CHANG I S, KANG K H, et al. Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand (BOD) sensor[J]. Biotechnology Letters, 2004, 26(22): 1717-1721. doi: 10.1007/s10529-004-3743-5
|
[26] |
STAGER J L, ZHANG X, LOGAN B E. Addition of acetate improves stability of power generation using microbial fuel cells treating domestic wastewater[J]. Bioelectrochemistry, 2017, 118: 154-160. doi: 10.1016/j.bioelechem.2017.08.002
|
[27] |
XING F, XI H, YU Y, et al. A sensitive, wide-ranging comprehensive toxicity indicator based on microbial fuel cell[J]. Science of the Total Environment, 2020, 703: 134667. doi: 10.1016/j.scitotenv.2019.134667
|
[28] |
史开宇, 王兴润, 范琴, 等. 不同还原药剂修复Cr(Ⅵ)污染土壤的稳定性评估[J]. 环境工程学报, 2020, 14(2): 473-479. doi: 10.12030/j.cjee.201904129
|
[29] |
HENG X Z, CHENG L Y, ISAIAH W, et al. Disposable self-support paper-based multi-anode microbial fuel cell (PMMFC) integrated with power management system (PMS) as the real time “shock” biosensor for wastewater[J]. Biosensors & Bioelectronics, 2016, 85: 232-239.
|
[30] |
JIANG Y, LIANG P, LIU P, et al. A cathode-shared microbial fuel cell sensor array for water alert system[J]. International Journal of Hydrogen Energy, 2017, 42(7): 4342-4348. doi: 10.1016/j.ijhydene.2016.12.050
|