[1] |
FANG W D, PENG Y, MUIR D, et al. A critical review of synthetic chemicals in surface waters of the US, the EU and China [J]. Environment International, 2019, 131: 104994. doi: 10.1016/j.envint.2019.104994
|
[2] |
HERNÁNDEZ F, BAKKER J, BIJLSMA L, et al. The role of analytical chemistry in exposure science: Focus on the aquatic environment [J]. Chemosphere, 2019, 222: 564-583. doi: 10.1016/j.chemosphere.2019.01.118
|
[3] |
STEHLE S, SCHULZ R. Agricultural insecticides threaten surface waters at the global scale [J]. PNAS, 2015, 112(18): 5750-5755. doi: 10.1073/pnas.1500232112
|
[4] |
OAKS J L, GILBERT M, VIRANI M Z, et al. Diclofenac residues as the cause of vulture population decline in Pakistan [J]. Nature, 2004, 427(6975): 630-633. doi: 10.1038/nature02317
|
[5] |
TANG Y, CRAVEN C B, WAWRYK N J P, et al. Advances in mass spectrometry-based omics analysis of trace organics in water. Trends in Analytical Chemistry[J], 2020, 128, 115918.
|
[6] |
ESCHER B I, STAPLETON H M, SCHYMANSKI E L. Tracking complex mixtures of chemicals in our changing environment [J]. Science, 2020, 367(6476): 388-392. doi: 10.1126/science.aay6636
|
[7] |
SCHYMANSKI E L, JEON J, GULDE R, et al. Identifying small molecules via high resolution mass spectrometry: Communicating confidence [J]. Environmental Science & Technology, 2014, 48(4): 2097-2098.
|
[8] |
ALYGIZAKIS N A, GAGO-FERRERO P, HOLLENDER J, et al. Untargeted time-pattern analysis of LC-HRMS data to detect spills and compounds with high fluctuation in influent wastewater [J]. Journal of Hazardous Materials, 2019, 361: 19-29. doi: 10.1016/j.jhazmat.2018.08.073
|
[9] |
WANG X B, YU N Y, YANG J P, et al. Suspect and non-target screening of pesticides and pharmaceuticals transformation products in wastewater using QTOF-MS [J]. Environment International, 2020, 137: 105599. doi: 10.1016/j.envint.2020.105599
|
[10] |
HELMUS R, TER LAAK TL, van WEZEL AP, et al. patRoon: Open source software platform for environmental mass spectrometry based non-target screening[J].Cheminform, 2021 , 13(1):1 .
|
[11] |
SMITH C A, WANT E J, O'MAILLE G, et al. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification [J]. Analytical Chemistry, 2006, 78(3): 779-787. doi: 10.1021/ac051437y
|
[12] |
HOHRENK L L, ITZEL F, BAETZ N, et al. Comparison of software tools for liquid chromatography–high-resolution mass spectrometry data processing in nontarget screening of environmental samples [J]. Analytical Chemistry, 2020, 92(2): 1898-1907. doi: 10.1021/acs.analchem.9b04095
|
[13] |
MYERS O D, SUMNER S J, LI S Z, et al. One step forward for reducing false positive and false negative compound identifications from mass spectrometry metabolomics data: New algorithms for constructing extracted ion chromatograms and detecting chromatographic peaks [J]. Analytical Chemistry, 2017, 89(17): 8696-8703. doi: 10.1021/acs.analchem.7b00947
|
[14] |
TAUTENHAHN R, BÖTTCHER C, NEUMANN S. Highly sensitive feature detection for high resolution LC/MS [J]. BMC Bioinformatics, 2008, 9(1): 1-16. doi: 10.1186/1471-2105-9-1
|
[15] |
KATAJAMAA M, ORESIC M, Processing methods for differential analysis of LC/MS profile data[J]. BMC Bioinformatics, 2005, 6: 179.
|
[16] |
PLUSKAL T, CASTILLO S, VILLAR-BRIONES A, et al. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data [J]. BMC Bioinformatics, 2010, 11(1): 1-11. doi: 10.1186/1471-2105-11-1
|
[17] |
TAUTENHAHN R, PATTI G J, RINEHART D, et al. XCMS online: A web-based platform to process untargeted metabolomic data [J]. Analytical Chemistry, 2012, 84(11): 5035-5039. doi: 10.1021/ac300698c
|
[18] |
STOLT R, TORGRIP R J O, LINDBERG J, et al. Second-order peak detection for multicomponent high-resolution LC/MS data [J]. Analytical Chemistry, 2006, 78(4): 975-983. doi: 10.1021/ac050980b
|
[19] |
ÅBERG K M, TORGRIP R J O, KOLMERT J, et al. Feature detection and alignment of hyphenated chromatographic-mass spectrometric data: Extraction of pure ion chromatograms using Kalman tracking [J]. Journal of Chromatography A, 2008, 1192(1): 139-146. doi: 10.1016/j.chroma.2008.03.033
|
[20] |
NI Y, SU M M, QIU Y P, et al. ADAP-GC 3.0: Improved peak detection and deconvolution of co-eluting metabolites from GC/TOF-MS data for metabolomics studies [J]. Analytical Chemistry, 2016, 88(17): 8802-8811. doi: 10.1021/acs.analchem.6b02222
|
[21] |
DU X, SMIRNOV A, PLUSKAL T, et al. Metabolomics data preprocessing using ADAP and MZmine 2[J]. Methods Mol Biol. 2020;2104:25-48.
|
[22] |
MYERS O D, SUMNER S J, LI S Z, et al. Detailed investigation and comparison of the XCMS and MZmine 2 chromatogram construction and chromatographic peak detection methods for preprocessing mass spectrometry metabolomics data [J]. Analytical Chemistry, 2017, 89(17): 8689-8695. doi: 10.1021/acs.analchem.7b01069
|
[23] |
HU Y X, CAI B, HUAN T. Enhancing metabolome coverage in data-dependent LC-MS/MS analysis through an integrated feature extraction strategy [J]. Analytical Chemistry, 2019, 91(22): 14433-14441. doi: 10.1021/acs.analchem.9b02980
|
[24] |
JU R, LIU X Y, ZHENG F J, et al. A graph density-based strategy for features fusion from different peak extract software to achieve more metabolites in metabolic profiling from high-resolution mass spectrometry [J]. Analytica Chimica Acta, 2020, 1139: 8-14. doi: 10.1016/j.aca.2020.09.029
|
[25] |
BAKER E S, PATTI G J. Perspectives on data analysis in metabolomics: Points of agreement and disagreement from the 2018 ASMS fall workshop [J]. Journal of the American Society for Mass Spectrometry, 2019, 30(10): 2031-2036. doi: 10.1007/s13361-019-02295-3
|
[26] |
KUHL C, TAUTENHAHN R, BÖTTCHER C, et al. CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets [J]. Analytical Chemistry, 2012, 84(1): 283-289. doi: 10.1021/ac202450g
|
[27] |
SINDELAR M, PATTI G J. Chemical discovery in the era of metabolomics [J]. Journal of the American Chemical Society, 2020, 142(20): 9097-9105. doi: 10.1021/jacs.9b13198
|
[28] |
ZENG Z D, LIU X Y, DAI W D, et al. Ion fusion of high-resolution LC-MS-based metabolomics data to discover more reliable biomarkers [J]. Analytical Chemistry, 2014, 86(8): 3793-3800. doi: 10.1021/ac500878x
|
[29] |
DEFELICE B C, MEHTA S S, SAMRA S, et al. Mass spectral feature list optimizer (MS-FLO): A tool to minimize false positive peak reports in untargeted liquid chromatography-mass spectroscopy (LC-MS) data processing [J]. Analytical Chemistry, 2017, 89(6): 3250-3255. doi: 10.1021/acs.analchem.6b04372
|
[30] |
SENAN O, AGUILAR-MOGAS A, NAVARRO M, et al. CliqueMS: a computational tool for annotating in-source metabolite ions from LC-MS untargeted metabolomics data based on a coelution similarity network [J]. Bioinformatics, 2019, 35(20): 4089-4097. doi: 10.1093/bioinformatics/btz207
|
[31] |
KÖPPE T, JEWELL K S, DIETRICH C, et al. Application of a non-target workflow for the identification of specific contaminants using the example of the Nidda river basin [J]. Water Research, 2020, 178: 115703. doi: 10.1016/j.watres.2020.115703
|
[32] |
BROECKLING C D, AFSAR F A, NEUMANN S, et al. RAMClust: a novel feature clustering method enables spectral-matching-based annotation for metabolomics data [J]. Analytical Chemistry, 2014, 86(14): 6812-6817. doi: 10.1021/ac501530d
|
[33] |
JU R, LIU X Y, ZHENG F J, et al. Removal of false positive features to generate authentic peak table for high-resolution mass spectrometry-based metabolomics study [J]. Analytica Chimica Acta, 2019, 1067: 79-87. doi: 10.1016/j.aca.2019.04.011
|
[34] |
DALY R, ROGERS S, WANDY J, et al. MetAssign: probabilistic annotation of metabolites from LC-MS data using a Bayesian clustering approach [J]. Bioinformatics, 2014, 30(19): 2764-2771. doi: 10.1093/bioinformatics/btu370
|
[35] |
KOUŘIL Š, de SOUSA J, VÁCLAVÍK J, et al. CROP: correlation-based reduction of feature multiplicities in untargeted metabolomic data [J]. Bioinformatics, 2020, 36(9): 2941-2942. doi: 10.1093/bioinformatics/btaa012
|
[36] |
FRAISIER-VANNIER O, CHERVIN J, CABANAC G, et al. MS-CleanR: A feature-filtering workflow for untargeted LC-MS based metabolomics [J]. Analytical Chemistry, 2020, 92(14): 9971-9981. doi: 10.1021/acs.analchem.0c01594
|
[37] |
LJONCHEVA M, STEPIŠNIK T, DŽEROSKI S, et al. Cheminformatics in MS-based environmental exposomics: Current achievements and future directions [J]. Trends in Environmental Analytical Chemistry, 2020, 28: e00099. doi: 10.1016/j.teac.2020.e00099
|
[38] |
GORNIK T, KOVACIC A, HEATH E, et al. Biotransformation study of antidepressant sertraline and its removal during biological wastewater treatment [J]. Water Research, 2020, 181: 115864. doi: 10.1016/j.watres.2020.115864
|
[39] |
WEIZEL A, SCHLÜSENER M P, DIERKES G, et al. Analysis of the aerobic biodegradation of glucocorticoids: Elucidation of the kinetics and transformation reactions [J]. Water Research, 2020, 174: 115561. doi: 10.1016/j.watres.2020.115561
|
[40] |
PURSCHKE K, VOSOUGH M, LEONHARDT J, et al. Evaluation of nontarget long-term LC–HRMS time series data using multivariate statistical approaches [J]. Analytical Chemistry, 2020, 92(18): 12273-12281. doi: 10.1021/acs.analchem.0c01897
|
[41] |
HOHRENK L L, VOSOUGH M, SCHMIDT T C. Implementation of chemometric tools to improve data mining and prioritization in LC-HRMS for nontarget screening of organic micropollutants in complex water matrixes [J]. Analytical Chemistry, 2019, 91(14): 9213-9220. doi: 10.1021/acs.analchem.9b01984
|
[42] |
WANG X B, YU N Y, QIAN Y L, et al. Non-target and suspect screening of per- and polyfluoroalkyl substances in Chinese municipal wastewater treatment plants [J]. Water Research, 2020, 183: 115989. doi: 10.1016/j.watres.2020.115989
|
[43] |
LI Y Q, YU N Y, DU L T, et al. Transplacental transfer of per- and polyfluoroalkyl substances identified in paired maternal and cord sera using suspect and nontarget screening [J]. Environmental Science & Technology, 2020, 54(6): 3407-3416.
|
[44] |
WANG Y, YU N Y, ZHU X B, et al. Suspect and nontarget screening of per- and polyfluoroalkyl substances in wastewater from a fluorochemical manufacturing park [J]. Environmental Science & Technology, 2018, 52(19): 11007-11016.
|
[45] |
KOELMEL J P, PAIGE M K, ARISTIZABAL-HENAO J J, et al. Toward comprehensive per- and polyfluoroalkyl substances annotation using FluoroMatch software and intelligent high-resolution tandem mass spectrometry acquisition [J]. Analytical Chemistry, 2020, 92(16): 11186-11194. doi: 10.1021/acs.analchem.0c01591
|
[46] |
FU Y Q, ZHANG Y H, ZHOU Z H, et al. Screening and determination of potential risk substances based on liquid chromatography–high-resolution mass spectrometry [J]. Analytical Chemistry, 2018, 90(14): 8454-8461. doi: 10.1021/acs.analchem.8b01153
|
[47] |
ZHANG M J, LIU Y L, CHEN J, et al. Sensitive untargeted screening of nerve agents and their degradation products using liquid chromatography-high resolution mass spectrometry [J]. Analytical Chemistry, 2020, 92(15): 10578-10587. doi: 10.1021/acs.analchem.0c01508
|
[48] |
ESPOSITO G, TETA R, MARRONE R, et al. A fast detection strategy for cyanobacterial blooms and associated cyanotoxins (FDSCC) reveals the occurrence of lyngbyatoxin A in Campania (South Italy) [J]. Chemosphere, 2019, 225: 342-351. doi: 10.1016/j.chemosphere.2019.02.201
|
[49] |
TETA R, DELLA SALA G, GLUKHOV E, et al. Combined LC–MS/MS and molecular networking approach reveals new cyanotoxins from the 2014 cyanobacterial bloom in green lake, Seattle [J]. Environmental Science & Technology, 2015, 49(24): 14301-14310.
|
[50] |
le DARÉ B, FERRON P J, ALLARD P M, et al. New insights into quetiapine metabolism using molecular networking [J]. Scientific Reports, 2020, 10(1): 19921. doi: 10.1038/s41598-020-77106-x
|
[51] |
HOLLENDER J, SCHYMANSKI E L, SINGER H P, et al. Nontarget screening with high resolution mass spectrometry in the environment: Ready to go? [J]. Environmental Science & Technology, 2017, 51(20): 11505-11512.
|
[52] |
POCHIRAJU S S, LINDEN K, GU A Z, et al. Development of a separation framework for effects-based targeted and non-targeted toxicological screening of water and wastewater [J]. Water Research, 2020, 170: 115289. doi: 10.1016/j.watres.2019.115289
|
[53] |
SCHEUBERT K, HUFSKY F, PETRAS D, et al. Significance estimation for large scale metabolomics annotations by spectral matching [J]. Nature Communications, 2017, 8: 1494. doi: 10.1038/s41467-017-01318-5
|
[54] |
STEIN S E, SCOTT D R. Optimization and testing of mass spectral library search algorithms for compound identification [J]. Journal of the American Society for Mass Spectrometry, 1994, 5(9): 859-866. doi: 10.1016/1044-0305(94)87009-8
|
[55] |
VINAIXA M, SCHYMANSKI E L, NEUMANN S, et al. Mass spectral databases for LC/MS- and GC/MS-based metabolomics: State of the field and future prospects [J]. TrAC Trends in Analytical Chemistry, 2016, 78: 23-35.
|
[56] |
HUFSKY F, SCHEUBERT K, BÖCKER S. New kids on the block: Novel informatics methods for natural product discovery [J]. Natural Product Reports, 2014, 31(6): 807. doi: 10.1039/c3np70101h
|
[57] |
XUE J C, GUIJAS C, BENTON H P, et al. METLIN MS2 molecular standards database: A broad chemical and biological resource [J]. Nature Methods, 2020, 17(10): 953-954. doi: 10.1038/s41592-020-0942-5
|
[58] |
TSUGAWA H, CAJKA T, KIND T, et al. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis [J]. Nature Methods, 2015, 12(6): 523-526.
|
[59] |
DÜHRKOP K, FLEISCHAUER M, LUDWIG M, et al. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information [J]. Nature Methods, 2019, 16(4): 299-302.
|
[60] |
RÖST H L, SACHSENBERG T, AICHE S, et al. OpenMS: A flexible open-source software platform for mass spectrometry data analysis [J]. Nature Methods, 2016, 13(9): 741-748. doi: 10.1038/nmeth.3959
|
[61] |
WANG M X, CARVER J J, PHELAN V V, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking [J]. Nature Biotechnology, 2016, 34(8): 828-837.
|
[62] |
TSUGAWA H, IKEDA K, TAKAHASHI M, et al. A lipidome atlas in MS-DIAL 4 [J]. Nature Biotechnology, 2020, 38(10): 1159-1163. doi: 10.1038/s41587-020-0531-2
|
[63] |
TSUGAWA H, NAKABAYASHI R, MORI T, et al. A cheminformatics approach to characterize metabolomes in stable-isotope-labeled organisms [J]. Nature Methods, 2019, 16(4): 295-298. doi: 10.1038/s41592-019-0358-2
|
[64] |
QIAN Y L, WANG X B, WU G, et al. Screening priority indicator pollutants in full-scale wastewater treatment plants by non-target analysis [J]. Journal of Hazardous Materials, 2021, 414: 125490. doi: 10.1016/j.jhazmat.2021.125490
|
[65] |
ALLARD P M, GENTA-JOUVE G, WOLFENDER J L. Deep metabolome annotation in natural products research: Towards a virtuous cycle in metabolite identification [J]. Current Opinion in Chemical Biology, 2017, 36: 40-49. doi: 10.1016/j.cbpa.2016.12.022
|
[66] |
RUTTKIES C, NEUMANN S, POSCH S. Improving MetFrag with statistical learning of fragment annotations [J]. BMC Bioinformatics, 2019, 20(1): 1-14. doi: 10.1186/s12859-018-2565-8
|
[67] |
SCHYMANSKI E L, GALLAMPOIS C M J, KRAUSS M, et al. Consensus structure elucidation combining GC/EI-MS, structure generation, and calculated properties [J]. Analytical Chemistry, 2012, 84(7): 3287-3295. doi: 10.1021/ac203471y
|
[68] |
GETZINGER G J, HIGGINS C P, FERGUSON P L. Structure database and in silico spectral library for comprehensive suspect screening of per- and polyfluoroalkyl substances (PFASs) in environmental media by high-resolution mass spectrometry [J]. Analytical Chemistry, 2021, 93(5): 2820-2827. doi: 10.1021/acs.analchem.0c04109
|
[69] |
DJOUMBOU-FEUNANG Y, PON A, KARU N, et al. CFM-ID 3.0: Significantly improved ESI-MS/MS prediction and compound identification [J]. Metabolites, 2019, 9(4): 72. doi: 10.3390/metabo9040072
|
[70] |
LI Z C, LU Y, GUO Y F, et al. Comprehensive evaluation of untargeted metabolomics data processing software in feature detection, quantification and discriminating marker selection [J]. Analytica Chimica Acta, 2018, 1029: 50-57. doi: 10.1016/j.aca.2018.05.001
|
[71] |
COBLE J B, FRAGA C G. Comparative evaluation of preprocessing freeware on chromatography/mass spectrometry data for signature discovery [J]. Journal of Chromatography A, 2014, 1358: 155-164. doi: 10.1016/j.chroma.2014.06.100
|
[72] |
LIBISELLER G, DVORZAK M, KLEB U, et al. IPO: a tool for automated optimization of XCMS parameters [J]. BMC Bioinformatics, 2015, 16: 118. doi: 10.1186/s12859-015-0562-8
|
[73] |
ELIASSON M, RÄNNAR S, MADSEN R, et al. Strategy for optimizing LC-MS data processing in metabolomics: A design of experiments approach [J]. Analytical Chemistry, 2012, 84(15): 6869-6876. doi: 10.1021/ac301482k
|
[74] |
ZHENG H, CLAUSEN M R, DALSGAARD T K, et al. Time-saving design of experiment protocol for optimization of LC-MS data processing in metabolomic approaches [J]. Analytical Chemistry, 2013, 85(15): 7109-7116. doi: 10.1021/ac4020325
|
[75] |
MCLEAN C, KUJAWINSKI E B. AutoTuner: High fidelity and robust parameter selection for metabolomics data processing [J]. Analytical Chemistry, 2020, 92(8): 5724-5732. doi: 10.1021/acs.analchem.9b04804
|