[1] HOJSAK I, BRAEGGER C, BRONSKY J, et a1. Arsenic in Rice: A Cause for Concern[J]. Journal of pediatric gastroenterology andnutrition, 2015, 60(1): 142-145. doi: 10.1097/MPG.0000000000000502
[2] PODGORSKI J, BERG M. Global threat of arsenic in groundwater[J]. Science, 2020, 368(6493): 845-850. doi: 10.1126/science.aba1510
[3] LIU G, SHI Y, GUO G, et al. Soil pollution characteristics and systemic environmental risk assessment of a large-scale arsenic slag contaminated site[J]. Journal of Cleaner Production, 2020, 251(1/2/3): 119721.
[4] 龚傲, 陈丽杰, 吴选高, 等. 含砷废渣处理现状及研究进展[J]. 有色金属科学与工程, 2019, 10(4): 28-33. doi: 10.13264/j.cnki.ysjskx.2019.04.005
[5] 郑锦一, 张学洪, 刘杰, 等. 广西老厂铅锌尾矿重金属动态纵向释放迁移规律[J]. 桂林理工大学学报, 2020, 40(3): 580-586. doi: 10.3969/j.issn.1674-9057.2020.03.018
[6] 许伟航, 傅平丰, 方贵稳, 等. 冶金渣基胶凝材料固化生活垃圾焚烧飞灰的性能研究[J]. 矿产保护与利用, 2021, 41(3): 10-16. doi: 10.13779/j.cnki.issn1001-0076.2021.03.002
[7] 倪海凤, 旦增, 周鹏, 等. 国内城市生活垃圾焚烧飞灰研究现状及进展[J]. 再生资源与循环经济, 2021, 14(3): 24-30. doi: 10.3969/j.issn.1674-0912.2021.03.009
[8] 张理群, 周慧慧, 郑刘根, 等. 尾渣中砷的精细化学结构、赋存形态[J]. 环境化学, 2021, 40(5): 1611-1618. doi: 10.7524/j.issn.0254-6108.2019121202
[9] LI E P, YANG T, WANG Q, et al. Long-term stability of arsenic calcium residue (ACR) treated with FeSO4 and H2SO4: Function of H+ and Fe(II)[J]. Journal of Hazardous Materials, 2021, 420: 126549. doi: 10.1016/j.jhazmat.2021.126549
[10] LI Y C, MIN X B, KE Y, et al. Preparation of red mud-based geopolymer materials from MSWI fly ash and red mud by mechanical activation[J]. Waste Management, 2019, 83: 202-208. doi: 10.1016/j.wasman.2018.11.019
[11] 曹珊珊, 吴光红, 苏睿先. 模拟中性和酸性降雨及垃圾渗滤液浸泡粉煤灰及渣重金属浸出特征[J]. 环境科学, 2011, 32(6): 1831-1836. doi: 10.13227/j.hjkx.2011.06.045
[12] 刘建, 何亮, 骆成杰, 等. 生活垃圾焚烧飞灰固化体重金属动态浸出规律[J]. 中国环境科学, 2019, 39(3): 1087-1093. doi: 10.3969/j.issn.1000-6923.2019.03.023
[13] 孙胤涛, 姚科, 郑虞琪, 等. 飞灰基碱激发胶凝材料中重金属的一维半动态浸出行为分析[J]. 环境科学与技术, 2021, 44(1): 24-31. doi: 10.19672/j.cnki.1003-6504.2021.01.004
[14] 盛农. 加速碳酸化法稳固化工业危险废物焚烧飞灰重金属的研究[J]. 安徽农学通报, 2018, 24(5): 74-79. doi: 10.3969/j.issn.1007-7731.2018.05.034
[15] 王娜娜. 水中重金属的快速判别与铜铬镍快速检测方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
[16] BU Y W, DAI X, LU P, et al. Release characteristics of semi-volatile heavy metals during co-combustion of sewage sludge and coal under the O2/CO2 atmosphere[J]. Journal of Thermal Analysis & Calorimetry, 2018, 133(2): 1041-1047.
[17] FAN C, WANG B, ZHANG T. Review on cement stabilization/solidification of municipal solid waste incineration fly ash[J]. Advances in Materials Science and Engineering, 2018, 10(2): 1-7.
[18] 何品晶, 吴长淋, 章骅, 等. 生活垃圾焚烧飞灰及其稳定化产物的长期浸出行为[J]. 环境化学, 2008, 27(6): 786-790. doi: 10.3321/j.issn:0254-6108.2008.06.018
[19] HYKS J, ASTRUP T, CHRISTENSEN T H. Long-term leaching from MSWI air-pollution-control residues: Leaching characterization and modeling[J]. Journal of Hazardous Materials, 2009, 162(1): 80-91.21. doi: 10.1016/j.jhazmat.2008.05.011
[20] 李清毅, 宋凯, 何亮, 等. 生活垃圾填埋场中飞灰固化体动态/半动态浸出行为[J]. 环境工程, 2019, 37(11): 149-154. doi: 10.13205/j.hjgc.201911024
[21] TANG Y, PAN J S, LI B Q, et al. Residual and ecological risk assessment of heavy metals in fly ash from co-combustion of excess sludge and coal[J]. Scientific Reports, 2021, 11(1): 2499. doi: 10.1038/s41598-021-81812-5
[22] LI W H, SUN Y J, HUANG Y M, et al. Evaluation of chemical speciation and environmental risk levels of heavy metals during varied acid corrosion conditions for raw and solidified/stabilized MSWI fly ash[J]. Waste Management, 2019, 87: 407-416. doi: 10.1016/j.wasman.2019.02.033
[23] 潘建华. 中国西南地区时雨量分布特征与时月变化[J]. 灾害学, 2019, 34(4): 113-120. doi: 10.3969/j.issn.1000-811X.2019.04.020
[24] 潘建华. 中国西南地区小时雨量概率分布特征[J]. 干旱气象, 2020, 38(2): 226-233.
[25] 费讲驰. 含砷废渣固砷体环境稳定性及其潜在风险评价[D]. 长沙: 中南大学, 2019.
[26] 杜梅, 杨俊, 刘君, 等. 矿区尾矿重金属环境风险评价方法综述[J]. 环境与可持续发展, 2021, 6: 143-151. doi: 10.19758/j.cnki.issn1673-288x.202106143
[27] 胡煜欣, 宋炜, 周瑞静. 某金属冶炼企业土壤As污染特征及潜在生态风险评价[J]. 中国环境监测, 2021, 37(6): 147-155. doi: 10.19316/j.issn.1002-6002.2021.06.16
[28] 中华人民共和国生态环境部, 中华人民共和国国家市场监督管理总局. 土壤环境质量建设用地土壤污染风险管控标准(试行): GB36600-2018[S]. 北京: 中国环境科学出版社, 2018.
[29] HAKANSON L. An ecological risk index for aquatic pollution control a sedimentological approach[J]. Water Research. 1980, 14(8): 975-1001.
[30] WEIBEL G, EGGENBERGER U, SCHLUMBERGER S, et al. Chemical associations and mobilization of heavy metals in fly ash from municipal solid waste incineration[J]. Waste Management, 2017, 62: 147-159. doi: 10.1016/j.wasman.2016.12.004
[31] LI W H, GU K, YU Q W, et al. Leaching behavior and environmental risk assessment of toxic metals in municipal solid waste incineration fly ash exposed to mature landfill leachate environment[J]. Waste Management, 2021, 120(1): 68-75.
[32] LUBNA A A I. Chemical characterization and mobility of metal species in fly ash-water system[J]. Water Science, 2015, 29(2): 109-122. doi: 10.1016/j.wsj.2015.10.001
[33] XUE-HUA P Y, DENG R Y, WANG C C, et al. Leaching characteristics of heavy metals from tailings under simulated rainfall in dexing copper mine[J]. Environmental Engineering, 2019, 37(5): 61-65.
[34] 杨玉婷. 尾矿材料重金属释放机理及其运移规律研究[D]. 昆明: 昆明理工大学, 2020.
[35] 中华人民共和国环境保护总局, 中华人民共和国国家质量监督检验检疫总局. 危险废物鉴别标准-浸出毒性鉴别: GB 5085.3-2007[S]. 北京: 中国环境科学出版社, 2007.
[36] 刘平. 煤矸石及其燃后灰渣中砷、硒、锑的淋溶释放研究[D]. 南昌: 南昌大学, 2013.
[37] HUANG X R, ZHAO H H, ZHANG G B, et al. Potential of removing Cd(II) and Pb(II)from contaminated water using a newly modified fly ash[J]. Chemosphere, 2020, 242: 125148. doi: 10.1016/j.chemosphere.2019.125148
[38] WANG Y T, ZHANG H, WU X Y, et al. Ecotoxicity assessment of sodium dimethyl dithio carbamate and its micro-sized metal chelates in Caenorhabditis elegans[J]. Science of The Total Environment, 2020, 720: 137666. doi: 10.1016/j.scitotenv.2020.137666
[39] KIM H S, SEO B H, KUPPUSAMY S, et al. A DOC coagulant, gypsum treatment cansimultaneously reduce As, Cd and Pb uptake by medicinal plants grown in contaminated soil[J]. Ecotoxicology and Environmental Safety, 2018, 148: 615-619. doi: 10.1016/j.ecoenv.2017.10.067
[40] 肖劲光, 刘喜, 肖武, 等. 高浓度砷渣土稳定化/固化效果及其影响因素研究[J]. 节能与环保, 2018(12): 74-75. doi: 10.3969/j.issn.1009-539X.2018.12.025
[41] 钱玲, 李冰, 陈希, 等. 黄金尾砂重金属淋溶释放规律[J]. 东南大学学报:自然科学版, 2020, 50(6): 1084-1089.
[42] LI X H, WU Y G, LIU M F, et al. Effects of simulated acid rain on heavy metal release and biological toxicity of lead and zinc smelting waste residues[J]. Journal of Agro-Environment Science, 2020, 39(11): 2504-2514.