[1] |
王浩洋. 磁性壳聚糖/板栗壳纤维复合材料处理含铬废水的研究[J]. 广东化工, 2020, 47(13): 96-98. doi: 10.3969/j.issn.1007-1865.2020.13.043
|
[2] |
刘晓凤, 徐鑫, 陈瑞锋, 等. 木屑吸附溶液中重金属离子的试验研究[J]. 太原理工大学学报, 2019, 50(4): 492-497. doi: 10.16355/j.cnki.issn1007-9432tyut.2019.04.013
|
[3] |
LIU J L, WONG M H. Pharmaceuticals and personal care products (Ppcps): A review on environmental contamination in China[J]. Environment International, 2013, 59: 208-224. doi: 10.1016/j.envint.2013.06.012
|
[4] |
RADKE M, LAUWIGI C, HEINKELE G, et al. Fate of the antibiotic sulfamethoxazole and its two major human metabolites in a water sediment test[J]. Environmental Science & Technology, 2009, 43(9): 3135-3141.
|
[5] |
刘金香, 葛玉杰, 谢水波, 等. 改性微生物吸附剂在重金属废水处理中的应用进展[J]. 微生物学通报, 2020, 47(3): 941-951. doi: 10.13344/j.microbiol.china.190507
|
[6] |
HUANG S W, CHEN X, WANG D D, et al. Bio-reduction and synchronous removal of hexavalent chromium from aqueous solutions using novel microbial cell/algal-derived biochar particles: Turning an environmental problem into an opportunity[J]. Bioresource Technology, 2020, 309: 123304. doi: 10.1016/j.biortech.2020.123304
|
[7] |
CATANIA V, LOPRESTI F, CAPPELLO S, et al. Innovative, ecofriendly biosorbent-biodegrading biofilms for bioremediation of oil- contaminated water[J]. New Biotechnology, 2020, 58(25): 25-31.
|
[8] |
DZIONEK A, WOJCIESZYNSKA D, GUZIK U. Natural carriers in bioremediation: A review[J]. Electronic Journal of Biotechnology, 2016, 23: 28-36. doi: 10.1016/j.ejbt.2016.07.003
|
[9] |
黄真真, 陈桂秋, 曾光明, 等. 固定化微生物技术及其处理废水机制的研究进展[J]. 环境污染与防治, 2015, 37(10): 77-85. doi: 10.15985/j.cnki.1001-3865.2015.10.015
|
[10] |
王广金, 褚良银, 杨平, 等. 固定化微生物技术及其在废水处理中的应用[J]. 重庆环境科学, 2003(12): 171-173.
|
[11] |
高华崇, 乔丽丽, 尹莉, 等. 包埋微生物固定化载体的结构性能研究[J]. 能源环境保护, 2017, 31(1): 29-33. doi: 10.3969/j.issn.1006-8759.2017.01.009
|
[12] |
BATOOL R, QURRAT-UL-AIN K, NAEEM A. Comparative study of Cr(VI) removal by Exiguobacterium sp. in free and immobilized forms[J]. Bioremediation Journal, 2014, 18(4): 317-327. doi: 10.1080/10889868.2014.938722
|
[13] |
昝逢宇, 霍守亮, 席北斗, 等. 非固定化和固定化啤酒酵母对Cd(Ⅱ)和Cu(Ⅱ)的吸附特性研究[J]. 环境工程学报, 2011, 5(11): 2473-2480.
|
[14] |
余关龙, 彭海渊, 王世涛, 等. 固定化生物吸附剂对Cd(Ⅱ)的去除性能及机理[J]. 化工进展, 2021, 40(5): 2882-2892. doi: 10.16085/j.issn.1000-6613.2020-1258
|
[15] |
TSEKOVA K, TODOROVA D, DENCHEVA V, et al. Biosorption of copper(II) and cadmium(II) from aqueous solutions by free and immobilized biomass of Aspergillus Niger[J]. Bioresource Technology, 2010, 101(6): 1727-1731. doi: 10.1016/j.biortech.2009.10.012
|
[16] |
SIDIRAS D, BATZIAS F, SCHROEDER E, et al. Dye adsorption on autohydrolyzed pine sawdust in batch and fixed-bed systems[J]. Chemical Engineering Journal, 2011, 171(3): 883-896. doi: 10.1016/j.cej.2011.04.029
|
[17] |
张汝壮. 功能化改性木屑材料的制备及其吸附/光催化性能研究[D]. 上海: 华东理工大学, 2015.
|
[18] |
马迎春. 固定化生物吸附剂对重金属铜的吸附性能研究[D]. 长沙: 湖南大学, 2013.
|
[19] |
檀笑, 曾洁仪, 张逸凡, 等. 一株典型伯克氏菌对Cr(Ⅵ)/Cu(Ⅱ)复合污染的吸附转化[J]. 环境污染与防治, 2019, 41(08): 932-937. doi: 10.15985/j.cnki.1001-3865.2019.08.013
|
[20] |
曾洁仪, 曾苏杭, 纪梦钿, 等. Sakaguchia Cladiensis对磺胺甲嘧啶/铜复合污染中抗生素的降解[J]. 中国环境科学, 2019, 39(12): 5293-5300.
|
[21] |
文晓凤, 杜春艳, 袁瀚宇, 等. 改性磁性纳米颗粒固定内生菌Bacillus Nealsonii吸附废水中Cd(Ⅱ)的特性研究[J]. 环境科学学报, 2016, 36(12): 4376-4383.
|
[22] |
赵涛, 蒋成爱, 丘锦荣, 等. 皇竹草生物炭对水中磺胺类抗生素吸附性能研究[J]. 水处理技术, 2017, 43(4): 56-61. doi: 10.16796/j.cnki.1000-3770.2017.04.013
|
[23] |
ZHOU A X, ZHANG Y L, LI R, et al. Adsorptive removal of sulfa antibiotics from water using spent mushroom substrate, an agricultural waste[J]. Desalination and Water Treatment, 2016, 57(1): 388-397.
|
[24] |
BAJPAI A K, RAJPOOT M, MISHRA D D. Studies on the correlation between structure and adsorption of sulfonamide compounds[J]. Colloids And Surfaces A:Physicochemical And Engineering Aspects, 2000, 168(3): 193-205.
|
[25] |
谢胜, 李娟英, 赵庆祥. 磺胺类抗生素的活性炭吸附过程研究[J]. 环境工程学报, 2012, 6(2): 483-488.
|
[26] |
TAPPE W, ZARFL C, KUMMER S, et al. Growth-inhibitory effects of sulfonamides at different pH: Dissimilar susceptibility patterns of a soil bacterium and a test bacterium used for antibiotic assays[J]. Chemosphere, 2008, 72(5): 836-843. doi: 10.1016/j.chemosphere.2008.02.041
|
[27] |
吕慧峰, 翟建平, 李琴, 等. 水杉锯末对三价铬离子的吸附机理研究[J]. 环境科学与技术, 2007(8): 24-25. doi: 10.3969/j.issn.1003-6504.2007.08.009
|
[28] |
俞伟, 赵思钰, 王宇航, 等. 苜蓿生物炭对磺胺甲恶唑的吸附机理研究[J]. 西北大学学报(自然科学版), 2022, 52(1): 115-127. doi: 10.16152/j.cnki.xdxbzr.2022-01-014
|
[29] |
ZHENG H, WANG Z Y, ZHAO J, et al. Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures[J]. Environmental Pollution, 2013, 181: 60-67. doi: 10.1016/j.envpol.2013.05.056
|
[30] |
李猛, 张鸿郭, 周子倩, 等. 固定化Srb处理低浓度含铬废水[J]. 环境工程, 2016, 34(4): 20-24. doi: 10.13205/j.hjgc.201604005
|
[31] |
赵锐. 耐Cr(Ⅲ)微生物的固定化及吸附Cr(Ⅲ)的特性研究[D]. 西安: 陕西科技大学, 2019.
|
[32] |
JING R, KJELLERUP B V. Biogeochemical cycling of metals impacting by microbial mobilization and immobilization[J]. Journal Of Environmental Sciences (China), 2018, 66: 146-154. doi: 10.1016/j.jes.2017.04.035
|
[33] |
MA P, ZHANG D. Immobilized lentinus edodes residue as absorbent for the enhancement of cadmium adsorption performance[J]. Frontiers of Environmental Science & Engineering, 2012, 6(4): 498-508.
|
[34] |
ZHOU W Z, LIU D S, ZHANG H O, et al. Bioremoval and recovery of cd(II) by pseudoalteromonas sp. SCSE709-6: Comparative study on growing and grown cells[J]. Bioresource Technology, 2014, 165: 145-151. doi: 10.1016/j.biortech.2014.01.119
|
[35] |
TODOROVA K, VELKOVA Z, STOYTCHEVA M, et al. Novel composite biosorbent from bacillus cereus for heavy metals removal from aqueous solutions[J]. Biotechnology, Biotechnological Equipment, 2019, 33(1): 730-738. doi: 10.1080/13102818.2019.1610066
|
[36] |
MAO F, LIU X H, WU K, et al. Biodegradation of sulfonamides by shewanella oneidensis Mr-1 and shewanella sp strain Mr-4[J]. Biodegradation, 2018, 29(2): 129-140. doi: 10.1007/s10532-017-9818-5
|
[37] |
OZDEMIR S, KILINC E, POLI A, et al. Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub. sp decanicus and Geobacillus thermoleovorans sub. sp stromboliensis: Equilibrium, kinetic and thermodynamic studies[J]. Chemical Engineering Journal, 2009, 152(1): 195-206. doi: 10.1016/j.cej.2009.04.041
|
[38] |
SHENG P X, WEE K H, TING Y P, et al. Biosorption of copper by immobilized marine algal biomass[J]. Chemical Engineering Journal, 2008, 136(2-3): 156-163. doi: 10.1016/j.cej.2007.03.033
|
[39] |
常帅帅, 张学杨, 王洪波, 等. 木屑生物炭的制备及其对Pb(Ⅱ)的吸附特性研究[J]. 生物质化学工程, 2020, 54(3): 37-44. doi: 10.3969/j.issn.1673-5854.2020.03.006
|
[40] |
ALI R M, HAMAD H A, HUSSEIN M M, et al. Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis[J]. Ecological Engineering, 2016, 91: 317-332. doi: 10.1016/j.ecoleng.2016.03.015
|
[41] |
KRISHNAN K A, ANIRUDHAN T S. A preliminary examination of the adsorption characteristics of Pb(II) ions using sulphurised activated carbon prepared from bagasse pith[J]. Indian Journal of Chemical Technology, 2002, 9(1): 32-40.
|
[42] |
WALLIS S C, GAHAN L R, CHARLES B G, et al. Copper(II) complexes of the fluoroquinolone antimicrobial ciprofloxacin. Synthesis, x-ray structural characterization, and potentiometric study[J]. Journal of Inorganic Biochemistry, 1996, 62(1): 1-16. doi: 10.1016/0162-0134(95)00082-8
|
[43] |
宋洁. 铬(Ⅵ)的微生物转化研究进展[J]. 生物学教学, 2015, 40(2): 43-44.
|
[44] |
MOHANTY K, JHA M, MEIKAP B C, et al. Biosorption of Cr(VI) from aqueous solutions by eichhornia crassipes[J]. Chemical Engineering Journal (Lausanne, Switzerland:1996), 2006, 117(1): 71-77.
|
[45] |
LAKSHMI S, SUVEDHA K, SRUTHI R, et al. Hexavalent chromium sequestration from electronic waste by biomass of aspergillus carbonarius[J]. Bioengineered, 2020, 11(1): 708-717. doi: 10.1080/21655979.2020.1780828
|
[46] |
SANGHI R, SANKARARAMAKRISHNAN N, DAVE B C. Fungal bioremediation of chromates: Conformational changes of biomass during sequestration, binding, and reduction of hexavalent chromium ions[J]. Journal of Hazardous Materials, 2009, 169(1-3): 1074-1080. doi: 10.1016/j.jhazmat.2009.04.056
|