[1] |
邓铭江, 周海鹰, 徐海量, 等. 塔里木河下游生态输水与生态调度研究[J]. 中国科学:技术科学, 2016, 46(8): 864-876.
|
[2] |
胡正超, 刘洋, 李生宇, 等. 台特玛湖干涸湖盆风沙对公路潜在危害评价[J]. 国土与自然资源研究, 2018(2): 54-59. doi: 10.3969/j.issn.1003-7853.2018.02.014
|
[3] |
霍天赐, 颜伟, 马晓飞. 内陆河尾闾湖泊水域面积变化及驱动因素研究——以台特玛湖地区为例[J]. 国土资源遥感, 2020, 32(3): 149-156.
|
[4] |
李丽君, 张小清, 陈长清, 等. 近20 a塔里木河下游输水对生态环境的影响[J]. 干旱区地理, 2018, 41(2): 238-247.
|
[5] |
王慧玲, 吐尔逊·哈斯木. 生态输水前后台特玛湖生态环境变化探究分析[J]. 生态科学, 2020, 39(1): 93-100. doi: 10.14108/j.cnki.1008-8873.2020.01.013
|
[6] |
ALCP, AJLL, CSKB, et al. Seasonal changes in dissolved organic matter composition in Delaware Bay, USA in March and August 2014: ScienceDirect[J]. Organic Geochemistry, 2018, 122: 87-97. doi: 10.1016/j.orggeochem.2018.05.005
|
[7] |
卢松, 江韬, 张进忠, 等. 两个水库型湖泊中溶解性有机质三维荧光特征差异[J]. 中国环境科学, 2015, 35(2): 516-523.
|
[8] |
詹亚, 尹浩, 冯景伟, 等. 派河及其支流溶解性有机质分子组成特征[J/OL][J]. 环境科学, 2022, 43(3): 1365-1374.
|
[9] |
张广彩, 王雅南, 常昕, 等. 应用多元统计研究蘑菇湖水体DOM紫外光谱特征[J]. 环境科学研究, 2019, 32(2): 301-308. doi: 10.13198/j.issn.1001-6929.2018.11.03
|
[10] |
WU J, PONS M N, POTIER O. Wastewater fingerprinting by UV-visible and synchronous fluorescence spectroscopy[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2006, 53(4/5): 449.
|
[11] |
梁月清, 刘会来, 崔康平, 等. 基于三维荧光光谱-平行因子分析法的工业园区污水溶解性有机物溯源与归趋[J]. 环境工程学报, 2022, 16(4): 1238-1247.
|
[12] |
徐俏, 叶茂, 徐海量, 等. 塔里木河下游生态输水对植物群落组成、多样性和稳定性的影响[J]. 生态学杂志, 2018, 37(9): 2603-2610.
|
[13] |
王雅梅, 张青青, 徐海量, 等. 生态输水前后台特玛湖植物多样性变化特征[J]. 干旱区研究, 2019, 36(5): 1186-1193.
|
[14] |
贾丹阳, 熊祯祯, 高岩, 等. 近30a台特玛湖地区土地利用/土地覆被变化及其影响因素[J]. 干旱区地理, 2021, 44(4): 1022-1031.
|
[15] |
张帅, 汪洋, 夏婷婷, 等. 塔里木河生态输水条件下土地利用/覆被变化对生态系统服务价值的影响[J]. 干旱区地理, 2021, 44(3): 739-749.
|
[16] |
吕纯剑, 高红杰, 李晓洁, 等. 沈阳市黑臭水体溶解性有机物组分及其光学特征[J]. 环境工程学报, 2019, 13(3): 559-568.
|
[17] |
CHEN W, PAUL W, JERRY L, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
|
[18] |
姚璐璐, 涂响, 于会彬, 等. 三维荧光区域积分评估城市污水中溶解性有机物去除[J]. 环境工程学报, 2013, 7(2): 411-416.
|
[19] |
LAVONEN E E, KOTHAWALA D N, TRANVIK L J, et al. Tracking changes in the optical properties and molecular composition of dissolved organic matter during drinking water production[J]. Water Research, 2015, 85: 286-294. doi: 10.1016/j.watres.2015.08.024
|
[20] |
HUGUET A, VACHER L, RELEXANS S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry, 2009, 40(6): 706-719. doi: 10.1016/j.orggeochem.2009.03.002
|
[21] |
OHNO T, FERNANDEZ I J, HIRADATE S, et al. Effect of soil acidification and forest type on water soluble soil organic matter properties[J]. Geoderma, 2007, 140(1-2): 176-187. doi: 10.1016/j.geoderma.2007.04.004
|
[22] |
ZHANG Y, LIU M, QIN B, et al. Photochemical degradation of chromophoric-dissolved organic matter exposed to simulated UV-B and natural solar radiation[J]. Hydrobiologia, 2009, 627(1): 159-168. doi: 10.1007/s10750-009-9722-z
|
[23] |
刘晶晶, 张彦, 翟洪艳, 等. 丰水期渤海湾水体中DOM的分布特征及来源[J]. 中国环境科学, 2021, 41(10): 4802-4810. doi: 10.19674/j.cnki.issn1000-6923.20210526.005
|
[24] |
翟天恩, 霍守亮, 张靖天. 沉积物中溶解性有机质的垂直分布光谱特性[J]. 环境工程学报, 2017, 11(11): 6196-6204.
|
[25] |
ZHANG Y, ZHANG E, YAN Y, et al. Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude[J]. Limnology & Oceanography, 2010, 55(6).
|
[26] |
林绍霞, 肖致强, 张转铃, 等. 贵州草海水体溶解性有机物的荧光光谱特征及来源解析[J]. 中国环境科学, 2021, 41(3): 1325-1335. doi: 10.3969/j.issn.1000-6923.2021.03.036
|
[27] |
XIN Y, YZ A, GZ A, et al. Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries - ScienceDirect[J]. Chemosphere, 2011, 82(2): 145-155. doi: 10.1016/j.chemosphere.2010.10.049
|
[28] |
YU X, ZHANG J, KONG F, et al. Identification of source apportionment and its spatial variability of dissolved organic matter in Dagu River-Jiaozhou Bay estuary based on the isotope and fluorescence spectroscopy analysis[J]. Ecological Indicators, 2019, 102(7): 528-537.
|
[29] |
宋柯峥, 蔡启佳, 洪培, 等. 武汉南湖可溶解性有机物的来源与组成分析[J]. 环境科学与技术, 2021, 44(3): 120-129.
|
[30] |
傅平青, 刘丛强, 吴丰昌. 溶解有机质的三维荧光光谱特征研究[J]. 光谱学与光谱分析, 2005(12): 2024-2028. doi: 10.3321/j.issn:1000-0593.2005.12.031
|
[31] |
颜秉斐, 彭剑峰, 邓齐玉, 等. 白塔堡河水体DOM分布特征及来源[J]. 环境工程技术学报, 2019, 9(3): 225-232. doi: 10.12153/j.issn.1674-991X.2019.02.190
|
[32] |
卜鸡明, 何佳, 焦立新, 等. 滇池流域入湖河流溶解性有机质的分布及来源[J]. 环境科学学报, 2020, 40(8): 2795-2804. doi: 10.13671/j.hjkxxb.2020.0128
|
[33] |
蒋凤华, 杨黄浩, 黎先春, 等. 胶州湾海水溶解有机物三维荧光特征研究[J]. 光谱学与光谱分析, 2007(9): 1765-1769.
|
[34] |
虞敏达, 张慧, 何小松, 等. 河北洨河溶解性有机物光谱学特性[J]. 环境科学, 2015, 36(9): 3194-3202. doi: 10.13227/j.hjkx.2015.09.010
|
[35] |
杨颖, 刘吉宝, 魏源送, 等. 北运河沉积物中氮磷营养盐及荧光溶解性有机物的污染特征研究[J/OL][J]. 环境科学学报, 2022, 42(3): 40-50.
|
[36] |
吕晶晶, 张列宇, 席北斗, 等. 人工湿地中水溶性有机物三维荧光光谱特性的分析[J]. 光谱学与光谱分析, 2015, 35(8): 2212-2216. doi: 10.3964/j.issn.1000-0593(2015)08-2212-05
|
[37] |
孙伟, 胡泓, 赵茜, 等. 达里诺尔湖水体DOM荧光特征及其来源解析[J]. 环境科学研究, 2020, 33(9): 2084-2093. doi: 10.13198/j.issn.1001-6929.2020.03.26
|
[38] |
SONG K, SHANG Y, WEN Z, et al. Characterization of CDOM in saline and freshwater lakes across China using spectroscopic analysis[J]. Water Research, 2019, 150(MAR.1): 403-417.
|
[39] |
周石磊, 陈召莹, 张甜娜, 等. 白洋淀典型淀区沉积物间隙水溶解性有机物的光谱时空演变特征[J]. 环境科学, 2021, 42(8): 3730-3742. doi: 10.13227/j.hjkx.202011063
|
[40] |
仝利红, 刘英俊, 张硕, 等. 乌伦古湖水体矿化度和氟化物浓度的年际变化及模拟[J]. 湖泊科学, 2022, 34(1): 134-141. doi: 10.18307/2022.0112
|
[41] |
王光焰, 徐生武. 台特玛湖生态环境现状与保护对策研究[J]. 水利发展研究, 2021, 21(8): 109-114. doi: 10.13928/j.cnki.wrdr.2021.08.024
|
[42] |
海拉提·阿力地阿尔汗, 彭小武, 刘晓伟, 等. 新疆乌伦古湖水生态环境保护对策研究[J]. 新疆环境保护, 2021, 43(2): 15-21.
|
[43] |
张同泽. 石羊河流域水资源合理配置与危机应对策略[D]. 咸阳: 西北农林科技大学, 2007.
|
[44] |
樊自立, 徐海量, 傅荩仪, 等. 台特玛湖湿地保护研究[J]. 第四纪研究, 2013, 33(3): 594-602. doi: 10.3969/j.issn.1001-7410.2013.03.20
|