[1] WU C, CHENG Q, LI L Q, et al. Synergetic signal amplification of graphene-Fe2O3 hybrid and hexadecyltrimethylammonium bromide as an ultrasensitive detection platform for bisphenol A [J]. Electrochimica Acta, 2014, 115: 434-439. doi: 10.1016/j.electacta.2013.10.188
[2] MIRZAJANI H, CHENG C, WU J, et al. A highly sensitive and specific capacitive aptasensor for rapid and label-free trace analysis of Bisphenol A (BPA) in canned foods [J]. Biosensors and Bioelectronics, 2017, 89: 1059-1067. doi: 10.1016/j.bios.2016.09.109
[3] LIM D S, KWACK S J, KIM K B, et al. Potential risk of bisphenol a migration from polycarbonate containers after heating, boiling, and microwaving [J]. Journal of Toxicology and Environmental Health, Part A, 2009, 72(21/22): 1285-1291.
[4] JING P, ZHANG X M, WU Z X, et al. Electrochemical sensing of bisphenol A by graphene-1-butyl-3-methylimidazolium hexafluorophosphate modified electrode [J]. Talanta, 2015, 141: 41-46. doi: 10.1016/j.talanta.2015.03.042
[5] COSIO M S, PELLICANÒ A, BRUNETTI B, et al. A simple hydroxylated multi-walled carbon nanotubes modified glassy carbon electrode for rapid amperometric detection of bisphenol A [J]. Sensors and Actuators B:Chemical, 2017, 246: 673-679. doi: 10.1016/j.snb.2017.02.104
[6] LI X N, FRANKE A A. Improvement of bisphenol A quantitation from urine by LCMS [J]. Analytical and Bioanalytical Chemistry, 2015, 407(13): 3869-3874. doi: 10.1007/s00216-015-8563-z
[7] HÁKOVÁ M, CHOCHOLOUŠOVÁ HAVLÍKOVÁ L, CHVOJKA J, et al. An on-line coupling of nanofibrous extraction with column-switching high performance liquid chromatography - A case study on the determination of bisphenol A in environmental water samples [J]. Talanta, 2018, 178: 141-146. doi: 10.1016/j.talanta.2017.08.098
[8] NICOLUCCI C, ERRICO S, FEDERICO A, et al. Human exposure to Bisphenol A and liver health status: Quantification of urinary and circulating levels by LC-MS/MS [J]. Journal of Pharmaceutical and Biomedical Analysis, 2017, 140: 105-112. doi: 10.1016/j.jpba.2017.02.058
[9] SPAGNUOLO M L, MARINI F, SARABIA L A, et al. Migration test of Bisphenol A from polycarbonate cups using excitation-emission fluorescence data with parallel factor analysis [J]. Talanta, 2017, 167: 367-378. doi: 10.1016/j.talanta.2017.02.033
[10] PENG C F, PAN N, XIE Z J, et al. Determination of bisphenol A by a gold nanoflower enhanced enzyme-linked immunosorbent assay [J]. Analytical Letters, 2016, 49(10): 1492-1501. doi: 10.1080/00032719.2015.1113420
[11] QIAO Y F, LI J, LI H B, et al. A label-free photoelectrochemical aptasensor for bisphenol A based on surface plasmon resonance of gold nanoparticle-sensitized ZnO nanopencils [J]. Biosensors and Bioelectronics, 2016, 86: 315-320. doi: 10.1016/j.bios.2016.06.062
[12] ZHU Y, ZHOU C Q, YAN X P, et al. Aptamer-functionalized nanoporous gold film for high-performance direct electrochemical detection of bisphenol A in human serum [J]. Analytica Chimica Acta, 2015, 883: 81-89. doi: 10.1016/j.aca.2015.05.002
[13] YU P, LIU Y Q, ZHANG X H, et al. A novel electrochemical aptasensor for bisphenol A assay based on triple-signaling strategy [J]. Biosensors and Bioelectronics, 2016, 79: 22-28. doi: 10.1016/j.bios.2015.12.007
[14] ARABALI V, EBRAHIMI M, GHEIBI S, et al. Bisphenol A analysis in food samples using modified nanostructure carbon paste electrode as a sensor [J]. Food Analytical Methods, 2016, 9(6): 1763-1769. doi: 10.1007/s12161-015-0349-6
[15] HUANG Y, LI X F, ZHENG S N. A novel and label-free immunosensor for bisphenol A using rutin as the redox probe [J]. Talanta, 2016, 160: 241-246. doi: 10.1016/j.talanta.2016.07.017
[16] LIU Y J, LIU Y, LIU B H. A dual-signaling strategy for ultrasensitive detection of bisphenol A by aptamer-based electrochemical biosensor [J]. Journal of Electroanalytical Chemistry, 2016, 781: 265-271. doi: 10.1016/j.jelechem.2016.06.048
[17] ENSAFI A A, AMINI M, REZAEI B. Molecularly imprinted electrochemical aptasensor for the attomolar detection of bisphenol A [J]. Microchimica Acta, 2018, 185(5): 1-7.
[18] YANG J, KIM S E, CHO M, et al. Highly sensitive and selective determination of bisphenol-A using peptide-modified gold electrode [J]. Biosensors and Bioelectronics, 2014, 61: 38-44. doi: 10.1016/j.bios.2014.04.009
[19] ALSAAFIN A, MCKEAGUE M. Functional nucleic acids as in vivo metabolite and ion biosensors [J]. Biosensors and Bioelectronics, 2017, 94: 94-106. doi: 10.1016/j.bios.2017.02.030
[20] NA W D, LIU X T, WANG L, et al. Label-free aptamer biosensor for selective detection of thrombin [J]. Analytica Chimica Acta, 2015, 899: 85-90. doi: 10.1016/j.aca.2015.09.051
[21] TAN F, CONG L C, LI X N, et al. An electrochemical sensor based on molecularly imprinted polypyrrole/graphene quantum dots composite for detection of bisphenol A in water samples [J]. Sensors and Actuators B:Chemical, 2016, 233: 599-606. doi: 10.1016/j.snb.2016.04.146
[22] ZHAN T R, SONG Y, TAN Z W, et al. Electrochemical bisphenol A sensor based on exfoliated Ni2Al-layered double hydroxide nanosheets modified electrode [J]. Sensors and Actuators B:Chemical, 2017, 238: 962-971. doi: 10.1016/j.snb.2016.07.151
[23] CHEN D, YAO D S, XIE C F, et al. Development of an aptasensor for electrochemical detection of tetracycline [J]. Food Control, 2014, 42: 109-115. doi: 10.1016/j.foodcont.2014.01.018
[24] ZAMORA-GÁLVEZ A, AIT-LAHCEN A, MERCANTE L A, et al. Molecularly imprinted polymer-decorated magnetite nanoparticles for selective sulfonamide detection [J]. Analytical Chemistry, 2016, 88(7): 3578-3584. doi: 10.1021/acs.analchem.5b04092
[25] WANG Y T, FENG J J, TAN Z A, et al. Electrochemical impedance spectroscopy aptasensor for ultrasensitive detection of adenosine with dual backfillers [J]. Biosensors and Bioelectronics, 2014, 60: 218-223. doi: 10.1016/j.bios.2014.04.022
[26] ALI H, MUKHOPADHYAY S, JANA N R. Selective electrochemical detection of bisphenol A using a molecularly imprinted polymer nanocomposite [J]. New Journal of Chemistry, 2019, 43(3): 1536-1543. doi: 10.1039/C8NJ05883K
[27] KOYUN O, GORDUK S, GENCTEN M, et al. A novel copper(ıı) phthalocyanine-modified multiwalled carbon nanotube-based electrode for sensitive electrochemical detection of bisphenol A [J]. New Journal of Chemistry, 2019, 43(1): 85-92. doi: 10.1039/C8NJ03721C
[28] KHANNA M, ROY S, KUMAR R, et al. MnO2 based bisphenol-A electrochemical sensor using micro-fluidic platform [J]. IEEE Sensors Journal, 2018, 18(6): 2206-2210. doi: 10.1109/JSEN.2018.2792476
[29] JALALVAND A R, HASELI A, FARZADFAR F, et al. Fabrication of a novel biosensor for biosensing of bisphenol A and detection of its damage to DNA [J]. Talanta, 2019, 201: 350-357. doi: 10.1016/j.talanta.2019.04.037