[1] 熊超, 李建军, 杨复沫, 等. 成都市冬季重污染过程中挥发性有机物污染特征及来源解析 [J]. 环境污染与防治, 2020, 42(5): 590-596,603. doi: 10.15985/j.cnki.1001-3865.2020.05.014 XIONG C, LI J J, YANG F M, et al. Pollution characteristics and source apportionment of VOCs during a heavy pollution process in winter in Chengdu [J]. Environmental Pollution & Control, 2020, 42(5): 590-596,603(in Chinese). doi: 10.15985/j.cnki.1001-3865.2020.05.014
[2] 王健. 负载型钌催化剂对VOCs的催化氧化研究[D]. 北京: 中国科学院过程工程研究所, 2016. WANG J. Study on supported ruthenium catalysts for the catalytic oxidation of VOCs[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2016(in Chinese).
[3] 张金瑶, 王祖武, 余琬冰, 等. 负载型钌催化剂的制备对甲苯催化燃烧的影响 [J]. 环境科学与技术, 2020, 43(2): 65-68. doi: 10.19672/j.cnki.1003-6504.2020.02.010 ZHANG J Y, WANG Z W, YU W B, et al. Effect of preparation of supported ruthenium catalysts on toluene catalytic combustion [J]. Environmental Science & Technology, 2020, 43(2): 65-68(in Chinese). doi: 10.19672/j.cnki.1003-6504.2020.02.010
[4] OEMAR U, ANG M L, HEE W F, et al. Perovskite LaxM1−xNi0.8Fe0.2O3 catalyst for steam reforming of toluene: Crucial role of alkaline earth metal at low steam condition [J]. Applied Catalysis B:Environmental, 2014, 148/149: 231-242. doi: 10.1016/j.apcatb.2013.10.001
[5] 段明华, 牟真, 李进军, 等. Co3O4/介孔分子筛催化剂对苯催化完全氧化的研究 [J]. 环境工程学报, 2008, 2(8): 1087-1091. DUAN M H, MU Z, LI J J, et al. Complete catalytic oxidation of benzene on Co3O4 catalysts supported on mesoporous molecular sieves [J]. Chinese Journal of Environmental Engineering, 2008, 2(8): 1087-1091(in Chinese).
[6] 袁金芳. 短孔道有序介孔材料的可控合成及吸附、催化性能研究[D]. 南京: 南京理工大学, 2011. YUAN J F. Study on the controllable synthesis and adsorption, catalytic properties of well-ordered mesoporous materials with short channels[D]. Nanjing: Nanjing University of Science and Technology, 2011(in Chinese).
[7] HE C, LI J J, CHENG J, et al. Comparative studies on porous material-supported Pd catalysts for catalytic oxidation of benzene, toluene, and ethyl acetate [J]. Industrial & Engineering Chemistry Research, 2009, 48(15): 6930-6936.
[8] 潘金鼎. 钌基纳米材料结构设计、制备及催化应用[D]. 北京: 中国科学院过程工程研究所, 2017. PAN J D. Structural design, preparation and catalytic application of ruthenium-based nanomaterials[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2017(in Chinese).
[9] DAI Q G, BAI S X, WANG J W, et al. The effect of TiO2 doping on catalytic performances of Ru/CeO2 catalysts during catalytic combustion of chlorobenzene [J]. Applied Catalysis B:Environmental, 2013, 142/143: 222-233. doi: 10.1016/j.apcatb.2013.05.026
[10] MITSUI T, MATSUI T, KIKUCHI R, et al. Low-temperature complete oxidation of ethyl acetate over CeO2-supported precious metal catalysts [J]. Topics in Catalysis, 2009, 52(5): 464-469. doi: 10.1007/s11244-009-9186-4
[11] 赵瑰施, 张玲, 万玉秋, 等. 咪唑类离子液体在β沸石上的吸附 [J]. 环境化学, 2016, 35(8): 1649-1656. doi: 10.7524/j.issn.0254-6108.2016.08.2016010402 ZHAO G S, ZHANG L, WAN Y Q, et al. Adsorption of imidazolium ionic liquid onto β zeolites [J]. Environmental Chemistry, 2016, 35(8): 1649-1656(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.08.2016010402
[12] 袁恩辉. ZSM-5沸石分子筛的制备及应用研究[D]. 兰州: 西北师范大学, 2015. YUAN E H. Synthesis of ZSM-5 zeolite and their application[D]. Lanzhou: Northwest Normal University, 2015(in Chinese).
[13] 吴迪, 刘洁, 印红玲, 等. 氮改性ZSM-5分子筛的苯吸附性能 [J]. 环境化学, 2021, 40(9): 2934-2942. doi: 10.7524/j.issn.0254-6108.2020051502 WU D, LIU J, YIN H L, et al. Study on benzene adsorption properties on nitrogen modified ZSM-5 zeolites [J]. Environmental Chemistry, 2021, 40(9): 2934-2942(in Chinese). doi: 10.7524/j.issn.0254-6108.2020051502
[14] 李红伟, 李泽宇, 贠宏飞, 等. 高分散Ru-PEGx/NaY催化对硝基甲苯加氢制对甲基环己胺 [J]. 精细化工, 2018, 35(10): 1673-1677,1712. LI H W, LI Z Y, YUN H F, et al. Hydrogenation of p-nitrotoluene to p-methyl-cyclohexylamine over high dispersion Ru-PEGx/NaY catalyst [J]. Fine Chemicals, 2018, 35(10): 1673-1677,1712(in Chinese).
[15] 赵振国. 吸附作用应用原理[M]. 北京: 化学工业出版社, 2005. ZHAO Z G. Application principle of adsorption action[M]. Beijing: Chemical Industry Press, 2005(in Chinese).
[16] 张佳琦. Beta分子筛的合成及吸附性能研究[D]. 桂林: 广西师范大学, 2019. ZHANG J Q. Synthesis and adsorption properties of beta molecular sieves[D]. Guilin: Guangxi Normal University, 2019(in Chinese).
[17] 邹思贝. Pt/泡沫沸石催化剂及其孔道调变对甲苯催化氧化性能影响研究[D]. 广州: 华南理工大学, 2020. ZOU S B. Pore-modified effect over toluene catalytic combustion performance of zeolite foam supported Pt catalysts[D]. Guangzhou: South China University of Technology, 2020(in Chinese).
[18] 张强. 单晶纳米/多级孔ZSM-5和Beta分子筛合成及催化性能研究[D]. 长春: 吉林大学, 2019. ZHANG Q. Syntheses of single-crystalline nanosized/hierarchical ZSM-5 and Beta zeolites with excellent catalytic performance[D]. Changchun: Jilin University, 2019(in Chinese).
[19] 张婷婷, 卜龙利, 宁轲, 等. 催化剂载体的优化及微波催化燃烧甲苯特性 [J]. 环境工程学报, 2020, 14(12): 3468-3479. doi: 10.12030/j.cjee.202003046 ZAHNG T T, BU L L, NING K, et al. Catalyst carriers optimization and characteristics of microwave catalytic combustion of toluene [J]. Chinese Journal of Environmental Engineering, 2020, 14(12): 3468-3479(in Chinese). doi: 10.12030/j.cjee.202003046
[20] 林立. Cu/Mn/La/MCM-41催化剂的合成及降解染料废水的研究[D]. 南昌: 南昌大学, 2019. LIN L. Synthesis of Cu/Mn/La/MCM-41 catalyst and degradation of dye wastewater[D]. Nanchang: Nanchang University, 2019(in Chinese).
[21] ZHANG J Y, RAO C, PENG H G, et al. Enhanced toluene combustion performance over Pt loaded hierarchical porous MOR zeolite [J]. Chemical Engineering Journal, 2018, 334: 10-18. doi: 10.1016/j.cej.2017.10.017
[22] 秦媛. 锰基催化剂催化氧化甲苯性能及其氧物种循环过程的研究[D]. 大连: 大连理工大学, 2020. QIN Y. Study of the performance of toluene catalytic oxidation and the cycle of oxygen species over Mn-based catalysts[D]. Dalian: Dalian University of Technology, 2020(in Chinese).
[23] REN Z, WU Z L, SONG W Q, et al. Low temperature propane oxidation over Co3O4 based nano-array catalysts: Ni dopant effect, reaction mechanism and structural stability [J]. Applied Catalysis B:Environmental, 2016, 180: 150-160. doi: 10.1016/j.apcatb.2015.04.021
[24] 陈立. Ru基催化剂对氯代挥发性有机物(CVOCs)的催化氧化研究[D]. 贵阳: 贵州大学, 2018. CHEN L. Catalytic oxidation of chlorinated volatile organic compounds over ruthenium-based catalysts[D]. Guiyang: Guizhou University, 2018(in Chinese).
[25] 黄婷. 新型ZSM-5负载Ru双功能催化剂的费—托反应性能研究[D]. 西安: 陕西师范大学, 2017. HUANG T. Study on Fischer-Tropsch reaction performance of the new ZSM-5 load Ru dual-function catalyst[D]. Xi'an: Shaanxi Normal University, 2017(in Chinese).
[26] PENG R S, SUN X B, LI S J, et al. Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene [J]. Chemical Engineering Journal, 2016, 306: 1234-1246. doi: 10.1016/j.cej.2016.08.056
[27] 郭瑶. SnO2催化材料用于甲苯深度氧化 : 指认其表面活性中心和影响活性的关键因素[D]. 南昌: 南昌大学, 2020. GUO Y. SnO2-based catalytic materials for toluene deep oxidation: identifying the surface active sites and the critical factors influencing the reaction performance[D]. Nanchang: Nanchang University, 2020(in Chinese).
[28] 李文秀, 许天行, 范俊刚, 等. 噻吩类硫化物在Ag(I)X分子筛上的选择性吸附 [J]. 石油学报(石油加工), 2013, 29(5): 870-875. LI W X, XU T X, FAN J G, et al. Selective adsorption of thiophenic sulfur compounds on Ag(I)X adsorbent [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2013, 29(5): 870-875(in Chinese).
[29] GUO Y, ZENG L L, XU X L, et al. Regulating SnO2 surface by metal oxides possessing redox or acidic properties: The importance of active O2−/O22− and acid sites for toluene deep oxidation [J]. Applied Catalysis A:General, 2020, 605: 117755. doi: 10.1016/j.apcata.2020.117755
[30] 肖丽. 分子筛负载钙钛矿型催化剂催化燃烧VOCs的研究[D]. 东营: 中国石油大学(华东), 2014. XIAO L. Study on catalytic combustion of VOCs by perovskite supported on zeolites[D]. Dongying: China University of Petroleum (East China), 2014(in Chinese).
[31] ANTUNES A P, RIBEIRO M F, SILVA J M, et al. Catalytic oxidation of toluene over CuNaHY zeolites: Coke formation and removal [J]. Applied Catalysis B:Environmental, 2001, 33(2): 149-164. doi: 10.1016/S0926-3373(01)00174-6
[32] 杨晓龙, 夏春谷, 唐立平, 等. 氧化镁载体和氧化钡助剂对钌基氨合成催化剂结构和性能的影响 [J]. 无机化学学报, 2011, 27(8): 1541-1549. YANG X L, XIA C G, TANG L P, et al. Effect of MgO support and BaO promoter on structure and catalytic activity of ruthenium catalysts for ammonia synthesis [J]. Chinese Journal of Inorganic Chemistry, 2011, 27(8): 1541-1549(in Chinese).
[33] 杨晓龙, 夏春谷, 唐立平, 等. 氧化铝载体和氧化钡助剂对钌基氨合成催化剂结构和性能的影响 [J]. 物理化学学报, 2010, 26(12): 3263-3272. doi: 10.3866/PKU.WHXB20101223 YANG X L, XIA C G, TANG L P, et al. Effect of alumina support and Barium oxide on the structure and catalytic activity of ruthenium catalysts for ammonia synthesis [J]. Acta Physico-Chimica Sinica, 2010, 26(12): 3263-3272(in Chinese). doi: 10.3866/PKU.WHXB20101223
[34] 彭若斯. 二氧化铈负载铂催化剂催化氧化甲苯的性能与反应机理研究[D]. 广州: 华南理工大学, 2017. PENG R S. Catalytic oxidation of toluene over platinum supported on ceria catalysts: Performance and reaction mechanism[D]. Guangzhou: South China University of Technology, 2017(in Chinese).
[35] 刘立忠. 高活性锰基双金属氧化物的制备及其低温催化氧化芳香类VOCs性能研究[D]. 上海: 上海交通大学, 2019. LIU L Z. Preparation of highly active manganese-based bimetallic oxides for low-temperature catalytic oxidation of aromatic VOCs[D]. Shanghai: Shanghai Jiaotong University, 2019(in Chinese).
[36] 罗萌萌. 铜掺杂不同结构锰氧化物催化剂的制备及其甲苯催化燃烧性能研究[D]. 成都: 西南交通大学, 2019. LUO M M. Preparation of copper modified manganese oxide catalysts with different structure and their performance for catalytic combustion of toluene[D]. Chengdu: Southwest Jiaotong University, 2019(in Chinese).
[37] 高君安, 李想, 史东军, 等. ZSM-5分子筛蜂窝状成型工艺及其吸附甲苯的性能研究 [J]. 现代化工, 2020, 40(6): 123-127. GAO J A, LI X, SHI D J, et al. Honeycomb molding process of ZSM-5 molecular sieves and adsorption to toluene [J]. Modern Chemical Industry, 2020, 40(6): 123-127(in Chinese).
[38] 方向晨, 杜艳泽, 张通. 沸石分子筛催化剂的“限域”效应 [J]. 中国科学:化学, 2021, 51(2): 87-96. doi: 10.1360/SSC-2020-0186 FANG X C, DU Y Z, ZHANG T. Confinement effect in zeolite catalysts [J]. Scientia Sinica (Chimica), 2021, 51(2): 87-96(in Chinese). doi: 10.1360/SSC-2020-0186
[39] 禇月英. 沸石分子筛孔道中催化反应机理的理论计算研究[D]. 武汉: 中国科学院武汉物理与数学研究所, 2013. ZHE Y Y. Theoretical calculation studies of catalytic reactions in zeolite channels[D]. Wuhan: Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences University of Chinese Academy of Science, 2013(in Chinese).
[40] 蔡晓兰. 固体酸催化剂在烷基化反应中的应用[D]. 广州: 广东工业大学, 2016. CAI X L. The application of solid acid catalyst in alkylation reaction[D]. Guangzhou: Guangdong University of Technology, 2016(in Chinese).