[1] SHEN Q, ZHANG L Y, SUN N N, et al. Hollow MnOx-CeO2 mixed oxides as highly efficient catalysts in NO oxidation [J]. Chemical Engineering Journal, 2017, 322: 46-55. doi: 10.1016/j.cej.2017.02.148
[2] ZHANG X L, WU Q, DIAO Q C, et al. Performance study for NH3-SCR at low temperature based on different methods of Mnx/SEP catalyst [J]. Chemical Engineering Journal, 2019, 370: 364-371. doi: 10.1016/j.cej.2019.03.065
[3] GONÇALVES A A S, CIESIELCZYK F, SAMOJEDEN B, et al. Toward development of single-atom ceramic catalysts for selective catalytic reduction of NO with NH3 [J]. Journal of Hazardous Materials, 2021, 401: 123413. doi: 10.1016/j.jhazmat.2020.123413
[4] SHI X K, GUO J X, SHEN T, et al. Enhancement of Ce doped La-Mn oxides for the selective catalytic reduction of NOx with NH3 and SO2 and/or H2O resistance [J]. Chemical Engineering Journal, 2021, 421: 129995. doi: 10.1016/j.cej.2021.129995
[5] LI M H, GUO Y Y, YANG J P. Spatially nanoconfined architectures: A promising design for selective catalytic reduction of NO X [J]. ChemCatChem, 2020, 12(22): 5599-5610. doi: 10.1002/cctc.202001024
[6] SONG I, LEE H, JEON S W, et al. Controlling catalytic selectivity mediated by stabilization of reactive intermediates in small-pore environments: A study of Mn/TiO2 in the NH3-SCR reaction [J]. ACS Catalysis, 2020, 10(20): 12017-12030. doi: 10.1021/acscatal.0c03154
[7] ZHA K W, CAI S X, HU H, et al. In situ DRIFTs investigation of promotional effects of tungsten on MnOx-CeO2/meso-TiO2 catalysts for NOx reduction [J]. The Journal of Physical Chemistry C, 2017, 121(45): 25243-25254. doi: 10.1021/acs.jpcc.7b08600
[8] HAN L, LI F L, ZHANG H J, et al. Low-temperature preparation of porous diatomite ceramics via direct-gelcasting using melamine and boric acid as cross-linker and sintering agent [J]. Ceramics International, 2019, 45(18): 24469-24473. doi: 10.1016/j.ceramint.2019.08.172
[9] YAN W, LIN X L, CHEN J F, et al. Effect of TiO2 addition on microstructure and strength of porous spinel (MgAl2O4) ceramics prepared from magnesite and Al(OH)3 [J]. Journal of Alloys and Compounds, 2015, 618: 287-291. doi: 10.1016/j.jallcom.2014.08.169
[10] GREGOROVÁ E, PABST W, UHLÍŘOVÁ T, et al. Processing, microstructure and elastic properties of mullite-based ceramic foams prepared by direct foaming with wheat flour [J]. Journal of the European Ceramic Society, 2016, 36(1): 109-120. doi: 10.1016/j.jeurceramsoc.2015.09.028
[11] WU Z, SUN L C, PAN J J, et al. Highly porous Y2 SiO5 ceramic with extremely low thermal conductivity prepared by foam-gelcasting-freeze drying method [J]. Journal of the American Ceramic Society, 2018, 101(3): 1042-1047. doi: 10.1111/jace.15330
[12] SERGEEVA A, FEOKTISTOVA N, PROKOPOVIC V, et al. Design of porous alginate hydrogels by sacrificial CaCO3Templates: Pore formation mechanism [J]. Advanced Materials Interfaces, 2015, 2(18): 1500386. doi: 10.1002/admi.201500386
[13] HAN L, DENG X G, LI F L, et al. Preparation of high strength porous mullite ceramics via combined foam-gelcasting and microwave heating [J]. Ceramics International, 2018, 44(12): 14728-14733. doi: 10.1016/j.ceramint.2018.05.101
[14] ZHANG X L, WANG P M, WU X, et al. Application of MnOx/HNTs catalysts in low-temperature NO reduction with NH3 [J]. Catalysis Communications, 2016, 83: 18-21. doi: 10.1016/j.catcom.2016.05.003
[15] 董学成. 硅藻土基孔梯度多孔陶瓷的制备与性能研究[D]. 武汉: 武汉理工大学, 2017. DONG X C. Preparation and properties of porous gradient ceramics from diatomite[D]. Wuhan: Wuhan University of Technology, 2017(in Chinese).
[16] LI C X, CHENG J, YE Q, et al. Poisoning effects of alkali and alkaline earth metal doping on selective catalytic reduction of NO with NH3 over the Nb-Ce/Zr-PILC catalysts [J]. Catalysts, 2021, 11(3): 329. doi: 10.3390/catal11030329
[17] FAN Z Y, SHI J W, GAO C, et al. Gd-modified MnOx for the selective catalytic reduction of NO by NH3: The promoting effect of Gd on the catalytic performance and sulfur resistance [J]. Chemical Engineering Journal, 2018, 348: 820-830. doi: 10.1016/j.cej.2018.05.038
[18] FRANCE L J, YANG Q, LI W, et al. Ceria modified FeMnOx—Enhanced performance and sulphur resistance for low-temperature SCR of NOx [J]. Applied Catalysis B:Environmental, 2017, 206: 203-215. doi: 10.1016/j.apcatb.2017.01.019
[19] SHI Y R, YI H H, GAO F Y, et al. Evolution mechanism of transition metal in NH3-SCR reaction over Mn-based bimetallic oxide catalysts: Structure-activity relationships [J]. Journal of Hazardous Materials, 2021, 413: 125361. doi: 10.1016/j.jhazmat.2021.125361
[20] GAO L, LI C T, LI S H, et al. Superior performance and resistance to SO2 and H2O over CoOx-modified MnOx/biomass activated carbons for simultaneous Hg0 and NO removal [J]. Chemical Engineering Journal, 2019, 371: 781-795. doi: 10.1016/j.cej.2019.04.104
[21] FAN J, NING P, WANG Y C, et al. Significant promoting effect of Ce or La on the hydrothermal stability of Cu-SAPO-34 catalyst for NH3-SCR reaction [J]. Chemical Engineering Journal, 2019, 369: 908-919. doi: 10.1016/j.cej.2019.03.049
[22] ZHANG G D, HAN W L, ZHAO H J, et al. Solvothermal synthesis of well-designed ceria-tin-titanium catalysts with enhanced catalytic performance for wide temperature NH3-SCR reaction [J]. Applied Catalysis B:Environmental, 2018, 226: 117-126. doi: 10.1016/j.apcatb.2017.12.030
[23] HUANG X S, DONG F, ZHANG G D, et al. A strategy for constructing highly efficient yolk-shell Ce@Mn@TiOx catalyst with dual active sites for low-temperature selective catalytic reduction of NO with NH3 [J]. Chemical Engineering Journal, 2021, 419: 129572. doi: 10.1016/j.cej.2021.129572
[24] DAMMA D, PAPPAS D K, BONINGARI T, et al. Study of Ce, Sb, and Y exchanged titania nanotubes and superior catalytic performance for the selective catalytic reduction of NOx [J]. Applied Catalysis B:Environmental, 2021, 287: 119939. doi: 10.1016/j.apcatb.2021.119939
[25] CHEN L, YAO X J, CAO J, et al. Effect of Ti4+ and Sn4+ co-incorporation on the catalytic performance of CeO2-MnOx catalyst for low temperature NH3-SCR [J]. Applied Surface Science, 2019, 476: 283-292. doi: 10.1016/j.apsusc.2019.01.095
[26] XU J Q, TANG T, ZHANG Q, et al. Remarkable low temperature catalytic activity for SCR of NO with propylene under oxygen-rich conditions over Mn0.2La0.07Ce0.05Ox/ZSM-5 catalyst [J]. Vacuum, 2021, 188: 110174. doi: 10.1016/j.vacuum.2021.110174
[27] ZHU N, SHAN W P, SHAN Y L, et al. Effects of alkali and alkaline earth metals on Cu-SSZ-39 catalyst for the selective catalytic reduction of NOx with NH3 [J]. Chemical Engineering Journal, 2020, 388: 124250. doi: 10.1016/j.cej.2020.124250