[1] |
FORTE F, PIETRANTONIO M, PUCCIARMATI S, et al. Lithium iron phosphate batteries recycling: An assessment of current status [J]. Critical Reviews in Environmental Science and Technology, 2021, 51(19): 2232-2259. doi: 10.1080/10643389.2020.1776053
|
[2] |
DELACOURT C, POIZOT P, TARASCON J M, et al. The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1 [J]. Nature Materials, 2005, 4(3): 254-260. doi: 10.1038/nmat1335
|
[3] |
HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles [J]. Nature, 2019, 575(7781): 75-86. doi: 10.1038/s41586-019-1682-5
|
[4] |
TIAN X H, ZHOU Y K, TU X F, et al. Well-dispersed LiFePO4 nanoparticles anchored on a three-dimensional graphene aerogel as high-performance positive electrode materials for lithium-ion batteries [J]. Journal of Power Sources, 2017, 340: 40-50. doi: 10.1016/j.jpowsour.2016.11.049
|
[5] |
FREITAS M B J G, CELANTE V G, PIETRE M K. Electrochemical recovery of cobalt and copper from spent Li-ion batteries as multilayer deposits [J]. Journal of Power Sources, 2010, 195(10): 3309-3315. doi: 10.1016/j.jpowsour.2009.11.131
|
[6] |
HOREH N B, MOUSAVI S M, SHOJAOSADATI S A. Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger [J]. Journal of Power Sources, 2016, 320: 257-266. doi: 10.1016/j.jpowsour.2016.04.104
|
[7] |
LI L, LU J, REN Y, et al. Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries [J]. Journal of Power Sources, 2012, 218: 21-27. doi: 10.1016/j.jpowsour.2012.06.068
|
[8] |
ZENG X L, LI J H, SINGH N. Recycling of spent lithium-ion battery: A critical review [J]. Critical Reviews in Environmental Science and Technology, 2014, 44(10): 1129-1165. doi: 10.1080/10643389.2013.763578
|
[9] |
WANG W, WU Y F. An overview of recycling and treatment of spent LiFePO4 batteries in China [J]. Resources, Conservation and Recycling, 2017, 127: 233-243. doi: 10.1016/j.resconrec.2017.08.019
|
[10] |
LAW J C F, LEUNG K S Y. Redox mediators and irradiation improve Fenton degradation of acesulfame [J]. Chemosphere, 2019, 217: 374-382. doi: 10.1016/j.chemosphere.2018.11.032
|
[11] |
DI Y W, LIU L, MA H C, et al. Bi doping into Ti/Co3O4 NWs (nanowires) for improved photoelectrochemical decolorization of dyeing wastewater (reactive brilliant blue KN-R) [J]. Journal of Materials Science:Materials in Electronics, 2020, 31(12): 9504-9513. doi: 10.1007/s10854-020-03492-7
|
[12] |
KHAJONE V B, BHAGAT P R. Synthesis of polymer-supported Brønsted acid-functionalized Zn-porphyrin complex, knotted with benzimidazolium moiety for photodegradation of azo dyes under visible-light irradiation [J]. Research on Chemical Intermediates, 2020, 46(1): 783-802. doi: 10.1007/s11164-019-03990-2
|
[13] |
ZHAO Y P, HU J Y. Photo-Fenton degradation of 17β-estradiol in presence of α-FeOOHR and H2O2 [J]. Applied Catalysis B:Environmental, 2008, 78(3/4): 250-258.
|
[14] |
林爱秋, 程和发. 芬顿及光芬顿法降解氟喹诺酮类抗生素研究进展 [J]. 环境化学, 2021, 40(5): 1305-1318. doi: 10.7524/j.issn.0254-6108.2021011401
LIN A Q, CHENG H F. Recent development in the degradation of fluoroquinolones by Fenton and photo-Fenton processes [J]. Environmental Chemistry, 2021, 40(5): 1305-1318(in Chinese). doi: 10.7524/j.issn.0254-6108.2021011401
|
[15] |
苗笑增, 戴慧旺, 陈建新, 等. 草酸根对α-FeOOH多相UV-Fenton催化能力的增效实验 [J]. 环境科学, 2018, 39(3): 1202-1211.
MIAO X Z, DAI H W, CHEN J X, et al. Experiment to enhance catalytic activity of α-FeOOH in heterogeneous UV-Fenton system by addition of oxalate [J]. Environmental Science, 2018, 39(3): 1202-1211(in Chinese).
|
[16] |
邓曹林, 王京刚, 王颖, 等. 石墨烯改性Al-MCM-41介孔分子筛负载铁芬顿催化剂降解苯酚 [J]. 环境化学, 2015, 34(6): 1185-1192. doi: 10.7524/j.issn.0254-6108.2015.06.2014110301
DENG C L, WANG J G, WANG Y, et al. Fenton catalytic degradation of phenol by using iron-loaded graphene modified mesoporous Al-MCM-41 catalyst [J]. Environmental Chemistry, 2015, 34(6): 1185-1192(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.06.2014110301
|
[17] |
付军, 余艳鸽, 赵昱东, 等. 模拟日光-非均相Fenton光催化降解喹啉 [J]. 环境化学, 2017, 36(5): 1072-1082. doi: 10.7524/j.issn.0254-6108.2017.05.2016090706
FU J, YU Y G, ZHAO Y D, et al. Simulated sunlight-heterogeneous Fenton degradation of quinoline in wastewater [J]. Environmental Chemistry, 2017, 36(5): 1072-1082(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.05.2016090706
|
[18] |
姜自立, 李献众, 刘治庆, 等. 苯醌对聚合硅酸铁多相UV-Fenton体系的增效机制 [J]. 中国环境科学, 2020, 40(7): 2943-2951. doi: 10.3969/j.issn.1000-6923.2020.07.018
JIANG Z L, LI X Z, LIU Z Q, et al. The enhanced mechanism of benzoquinone(BQ) on poly-silicate-ferric(PSF) in heterogeneous UV-Fenton system [J]. China Environmental Science, 2020, 40(7): 2943-2951(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.07.018
|
[19] |
苏晓轩, 徐国鹏, 李献众, 等. PSF多相UV-Fenton体系原儿茶酸与龙胆酸的增效对比 [J]. 中国环境科学, 2021, 41(4): 1624-1633. doi: 10.3969/j.issn.1000-6923.2021.04.015
SU X X, XU G P, LI X Z, et al. Comparison of the enhanced effect of protocatechuic acid and gentisic acid on the heterogeneous UV-Fenton system with Poly-Silicate-Ferric(PSF) as catalyst [J]. China Environmental Science, 2021, 41(4): 1624-1633(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.04.015
|
[20] |
QIN Y X, SONG F H, AI Z H, et al. Protocatechuic acid promoted alachlor degradation in Fe(Ⅲ)/H2O2 Fenton system [J]. Environmental Science & Technology, 2015, 49(13): 7948-7956.
|
[21] |
HOSOKAWA S, SHUKUYA K, SOGABE K, et al. Novel absorbance peak of gentisic acid following the oxidation reaction [J]. PLoS One, 2020, 15(4): e0232263. doi: 10.1371/journal.pone.0232263
|
[22] |
ABEDI F, RAZAVI B M, HOSSEINZADEH H. A review on gentisic acid as a plant derived phenolic acid and metabolite of aspirin: Comprehensive pharmacology, toxicology, and some pharmaceutical aspects [J]. Phytotherapy Research, 2020, 34(4): 729-741. doi: 10.1002/ptr.6573
|
[23] |
贺俊梅, 孔令娜, 梁倩, 等. 苯醌类与苯醌亚胺类在日光/Fenton体系中的光敏性 [J]. 中国环境科学, 2016, 36(9): 2638-2644. doi: 10.3969/j.issn.1000-6923.2016.09.013
HE J M, KONG L N, LIANG Q, et al. Photosensitivity of benzoquinones and benzoquinoneimines in the sunlight/Fenton system [J]. China Environmental Science, 2016, 36(9): 2638-2644(in Chinese). doi: 10.3969/j.issn.1000-6923.2016.09.013
|
[24] |
袁文辉, 徐志峰. 混合电镀污泥中铬铁的选择性分离工艺 [J]. 有色金属(冶炼部分), 2016(9): 55-58.
YUAN W H, XU Z F. Selective separation technology of chromium and ironfrom mixed electroplating sludge [J]. Nonferrous Metals (Extractive Metallurgy), 2016(9): 55-58(in Chinese).
|
[25] |
HALL R D, CHIGNELL C F. Steady-state near-infrared detection of singlet molecular oxygen: A Stern-Volmer quenching experiment with sodium azide [J]. Photochemistry and Photobiology, 1987, 45(4): 459-464. doi: 10.1111/j.1751-1097.1987.tb05403.x
|
[26] |
CLENNAN E L, PACE A. Advances in singlet oxygen chemistry [J]. Tetrahedron, 2005, 61(28): 6665-6691. doi: 10.1016/j.tet.2005.04.017
|
[27] |
WU K Q, YI D X, ZHAO J C, et al. Photo-Fenton degradation of a dye under visible light irradiation [J]. Journal of Molecular Catalysis A:Chemical, 1999, 144(1): 77-84. doi: 10.1016/S1381-1169(98)00354-9
|
[28] |
陈建新. 铁柱撑膨润土催化UV-Fenton降解染料的性能及其机理研究[D]. 杭州: 浙江大学, 2007: 120.
CHEN J X. Study on the catalytic properties of Fe-pillared bentonite and mechanism of UV-Fenton degradation of dye[D]. Hangzhou: Zhejiang University, 2007:120(in Chinese).
|
[29] |
王安静. 苯醌类化合物的降解特性[D]. 大连: 大连海事大学, 2018:56.
WANG A J. The degradation characteristics of benzoquinones compounds[D]. Dalian, China: Dalian Maritime University, 2018:56(in Chinese).
|
[30] |
王彦广, 吕萍, 张殊佳. 有机化学[M]. 2版. 北京: 化学工业出版社, 2009:396.
WANG Y G, LU P, ZHANG S J, et al. Organic chemistry [M]. Beijing: Chemical Industry Press, 2009:396(in Chinese).
|
[31] |
GAO J, LIU Y T, XIA X N, et al. Mechanisms for photo assisted Fenton of synthesized pyrrhotite at neutral pH [J]. Applied Surface Science, 2019, 463: 863-871. doi: 10.1016/j.apsusc.2018.09.007
|
[32] |
ZENG L Y, GONG J Y, DAN J F, et al. Novel visible light enhanced Pyrite-Fenton system toward ultrarapid oxidation of p-nitrophenol: Catalytic activity, characterization and mechanism [J]. Chemosphere, 2019, 228: 232-240. doi: 10.1016/j.chemosphere.2019.04.103
|
[33] |
LI J F, LI J G, LIU X Y, et al. Effect of silicon content on preparation and coagulation performance of poly-silicic-metal coagulants derived from coal gangue for coking wastewater treatment [J]. Separation and Purification Technology, 2018, 202: 149-156. doi: 10.1016/j.seppur.2018.03.055
|
[34] |
FU Y, YU S L, HAN C W. Morphology and coagulation performance during preparation of poly-silicic-ferric (PSF) coagulant [J]. Chemical Engineering Journal, 2009, 149(1/2/3): 1-10.
|
[35] |
HUAI Y Y, PLACKOWSKI C, PENG Y J. The effect of gold coupling on the surface properties of pyrite in the presence of ferric ions [J]. Applied Surface Science, 2019, 488: 277-283. doi: 10.1016/j.apsusc.2019.05.236
|