[1] CHU W H, FANG C, DENG Y, et al. Intensified disinfection amid COVID-19 pandemic poses potential risks to water quality and safety [J]. Environmental Science & Technology, 2021, 55(7): 4084-4086.
[2] LI Z G, SONG G F, BI Y H, et al. Occurrence and distribution of disinfection byproducts in domestic wastewater effluent, tap water, and surface water during the SARS-CoV-2 pandemic in China [J]. Environmental Science & Technology, 2021, 55(7): 4103-4114.
[3] 叶利兰, 甘春娟, 陈垚, 等. 疫情防控期间含氯消毒剂大量使用对水生生物的影响综述 [J]. 环境污染与防治, 2021, 43(5): 644-648. YE L L, GAN C J, CHEN Y, et al. Effect of chlorinated disinfectants usage on aquatic organism during the epidemic control: A review [J]. Environmental Pollution & Control, 2021, 43(5): 644-648(in Chinese).
[4] 楚文海, 沈杰, 栾鑫淼, 等. 疫情防控期间污水处理厂强化消毒下的水环境次生风险实证研究 [J]. 给水排水, 2020, 56(6): 1-5, 14. doi: 10.13789/j.cnki.wwe1964.2020.06.001 CHU W H, SHEN J, LUAN X M, et al. Study on secondary risk of water environment under enhanced disinfection of wastewater treatment plant during epidemic prevention and control [J]. Water & Wastewater Engineering, 2020, 56(6): 1-5, 14(in Chinese). doi: 10.13789/j.cnki.wwe1964.2020.06.001
[5] ZHONG Y, GAN W H, DU Y, et al. Disinfection byproducts and their toxicity in wastewater effluents treated by the mixing oxidant of ClO2/Cl2 [J]. Water Research, 2019, 162: 471-481. doi: 10.1016/j.watres.2019.07.012
[6] 李悦宁, 贺凯, 王婷, 等. 日本消毒副产物及其前体物的现状及研究进展 [J]. 环境化学, 2018, 37(8): 1820-1830. doi: 10.7524/j.issn.0254-6108.2018022602 LI Y N, HE K, WANG T, et al. Trend and progress on disinfection byproducts and their precursors in Japan [J]. Environmental Chemistry, 2018, 37(8): 1820-1830(in Chinese). doi: 10.7524/j.issn.0254-6108.2018022602
[7] LIU C, MESSERLIAN C, CHEN Y J, et al. Trimester-specific associations of maternal exposure to disinfection by-products, oxidative stress, and neonatal neurobehavioral development [J]. Environment International, 2021, 157: 106838. doi: 10.1016/j.envint.2021.106838
[8] SIMMONS J E, RICHARDSON S D, TEUSCHLER L K, et al. Research issues underlying the four-lab study: Integrated disinfection by-products mixtures research [J]. Journal of Toxicology and Environmental Health. Part A, 2008, 71(17): 1125-1132. doi: 10.1080/15287390802181906
[9] LIU J Q, GIBB M, PRADHAN S H, et al. Synergistic cytotoxicity of bromoacetic acid and three emerging bromophenolic disinfection byproducts against human intestinal and neuronal cells [J]. Chemosphere, 2022, 287: 131794. doi: 10.1016/j.chemosphere.2021.131794
[10] SRIVASTAV A L, PATEL N, CHAUDHARY V K. Disinfection by-products in drinking water: Occurrence, toxicity and abatement [J]. Environmental Pollution, 2020, 267: 115474. doi: 10.1016/j.envpol.2020.115474
[11] ROBERTS J F, van EGMOND R, PRICE O R. Toxicity of haloacetic acids to freshwater algae [J]. Ecotoxicology and Environmental Safety, 2010, 73(1): 56-61. doi: 10.1016/j.ecoenv.2009.09.013
[12] NAROTSKY M G, BEST D S, MCDONALD A, et al. Pregnancy loss and eye malformations in offspring of F344 rats following gestational exposure to mixtures of regulated trihalomethanes and haloacetic acids [J]. Reproductive Toxicology, 2011, 31(1): 59-65. doi: 10.1016/j.reprotox.2010.08.002
[13] QIN L T, LIU M, ZHANG X, et al. Concentration addition, independent action, and quantitative structure-activity relationships for chemical mixture toxicities of the disinfection by products of haloacetic acids on the green alga Raphidocelis subcapitata [J]. Environmental Toxicology and Chemistry, 2021, 40(5): 1431-1442. doi: 10.1002/etc.4995
[14] LIN T, ZHOU D J, DONG J, et al. Acute toxicity of dichloroacetonitrile (DCAN), a typical nitrogenous disinfection by-product (N-DBP), on zebrafish (Danio rerio) [J]. Ecotoxicology and Environmental Safety, 2016, 133: 97-104. doi: 10.1016/j.ecoenv.2016.06.047
[15] FISHER D, YONKOS L, ZIEGLER G, et al. Acute and chronic toxicity of selected disinfection byproducts to Daphnia magna, Cyprinodon variegatus, and Isochrysis galbana [J]. Water Research, 2014, 55: 233-244. doi: 10.1016/j.watres.2014.01.056
[16] MELO A, FERREIRA C, FERREIRA I M P L V O, et al. Acute and chronic toxicity assessment of haloacetic acids using Daphnia magna [J]. Journal of Toxicology and Environmental Health. Part A, 2019, 82(18): 977-989. doi: 10.1080/15287394.2019.1676959
[17] PARK K Y, CHOI S Y, LEE S H, et al. Comparison of formation of disinfection by-products by chlorination and ozonation of wastewater effluents and their toxicity to Daphnia magna [J]. Environmental Pollution, 2016, 215: 314-321. doi: 10.1016/j.envpol.2016.04.001
[18] MILOLOŽA M, BULE K, UKIĆ Š, et al. Ecotoxicological determination of microplastic toxicity on algae Chlorella sp. : Response surface modeling approach [J]. Water, Air, & Soil Pollution, 2021, 232(8): 1-16.
[19] 刘宝明. 组合工艺对地表水中消毒副产物前体物控制效果研究[D]. 无锡: 江南大学, 2020. LIU B M. Study on the control effect of combined process on the precursors of disinfection byproduct[D]. Wuxi: Jiangnan University, 2020(in Chinese).
[20] LI Z G, LIU X Y, HUANG Z J, et al. Occurrence and ecological risk assessment of disinfection byproducts from chlorination of wastewater effluents in East China [J]. Water Research, 2019, 157: 247-257. doi: 10.1016/j.watres.2019.03.072
[21] KARPOV G V, VASILIEV E S, VOLKOV N D, et al. Structure of monochloroacetic acid anions in water from mass spectral data [J]. Chemical Physics Letters, 2020, 760: 138001. doi: 10.1016/j.cplett.2020.138001
[22] 魏复盛, 国家环境保护总局, 水和废水监测分析方法编委会. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. State Environmental Protection Administration. Determination methods for examination of water and wastewater [M]. Beijing: China Environment Science Press, 2002(in Chinese).
[23] HE N, LIU Z W, SUN X, et al. Phytotoxicity, bioaccumulation, and degradation of nonylphenol in different microalgal species without bacterial influences [J]. International Journal of Molecular Sciences, 2020, 21(4): 1338. doi: 10.3390/ijms21041338
[24] 王辅明, 朱祥伟, 马永鹏, 等. 低浓度五氯酚暴露对稀有鮈鲫体内SOD活性、GSH和HSP70含量的影响 [J]. 生态毒理学报, 2009, 4(3): 415-421. WANG F M, ZHU X W, MA Y P, et al. Effects of low concentration of pentachlorophenol exposure on SOD activity, GSH and HSP70 content in rare minnow(Gobiocypris rarus) [J]. Asian Journal of Ecotoxicology, 2009, 4(3): 415-421(in Chinese).
[25] 刘青青, 张闪闪, 邹华, 等. 斜生栅藻与氰化钾的相互作用 [J]. 环境化学, 2018, 37(3): 552-558. doi: 10.7524/j.issn.0254-6108.2017073001 LIU Q Q, ZHANG S S, ZOU H, et al. Interactions between Scenedesmus obliquus and potassium cyanide [J]. Environmental Chemistry, 2018, 37(3): 552-558(in Chinese). doi: 10.7524/j.issn.0254-6108.2017073001
[26] DING J N, LU G H, LIANG Y. Evaluation of the interactive effects of lead, zinc and benzo(k)fluoranthene on crucian carp, Carassius carassius, using a multiple biomarker approach [J]. Bulletin of Environmental Contamination and Toxicology, 2014, 92(5): 534-539. doi: 10.1007/s00128-014-1220-y
[27] STEBBING A R D. Tolerance and hormesis—increased resistance to copper in hydroids linked to hormesis [J]. Marine Environmental Research, 2002, 54(3/4/5): 805-809.
[28] 冯凡, 赵中华, 陈晨, 等. 铜绿微囊藻对有机毒物菲的生理生态响应研究 [J]. 长江流域资源与环境, 2018, 27(9): 2031-2041. FENG F, ZHAO Z H, CHEN C, et al. Physi-ecological responses of Microcystis aeruginosa to phenanthrene exposure [J]. Resources and Environment in the Yangtze Basin, 2018, 27(9): 2031-2041(in Chinese).