[1] 周永章, 付善明, 张澄博, 等. 华南地区含硫化物金属矿山生态环境中的重金属元素地球化学迁移模型——重点对粤北大宝山铁铜多金属矿山的观察[J]. 地学前缘, 2008, 15(5): 248-255. doi: 10.3321/j.issn:1005-2321.2008.05.027
[2] VITHANA C L, SULLIVAN L A, BURTON E D, et al. Stability of schwertmannite and jarosite in an acidic landscape: Prolonged field incubation[J]. Geoderma:A Global Journal of Soil Science, 2015: 239-240. doi: 10.1016/j.geoderma.2014.09.022
[3] GAGLIANO W B, BRILL M R, BIGHAM J M, et al. Chemistry and mineralogy of ochreous sediments in a constructed mine drainage wetland 1 1 Associate editor: P. A. Maurice[J]. Geochimica et Cosmochimica Acta, 2003, 68(9): 2119-2128.
[4] QU L, XIE Y Y, LU G N, et al. Distribution, fractionation, and contamination assessment of heavy metals in paddy soil related to acid mine drainage[J]. Paddy and Water Environment, 2017, 15(3): 553-562. doi: 10.1007/s10333-016-0572-9
[5] ZHUANG P. Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: Implication for human health[J]. Environmental Geochemistry & Health, 2009, 31(31): 707-715.
[6] XIE Y Y, LU G N, YANG C F, et al. Mineralogical characteristics of sediments and heavy metal mobilization along a river watershed affected by acid mine drainage[J]. PloS one, 2018, 13(1): e0190010. doi: 10.1371/journal.pone.0190010
[7] CHEN M Q, Lu G N, GUO C L, et al. Sulfate migration in a river affected by acid mine drainage from the Dabaoshan mining area, South China.[J]. Chemosphere, 2015, 119: 734-743. doi: 10.1016/j.chemosphere.2014.07.094
[8] 邹琦, 陈莹, 刘奇缘, 等 广东大宝山铁龙AMD中赭色沉积物的含铁次生矿物研究[J]. 高校地质学报, 2017, 23(3): 442-451.
[9] 周立祥. 酸性矿山废水中生物成因次生高铁矿物的形成及环境工程意义[J]. 地学前缘, 2008, 15(6): 74-82. doi: 10.3321/j.issn:1005-2321.2008.06.010
[10] PAIKARAY S, PEIFFER S. Dissolution kinetics of sulfate from schwertmannite under variable pH conditions[J]. Mine Water and the Environment, 2010, 29(4): 263-269. doi: 10.1007/s10230-010-0118-0
[11] BURTON E D, BUSH R T, SULLIVAN L A, et al. Schwertmannite transformation to goethite via the Fe(II) pathway: Reaction rates and implications for iron–sulfide formation[J]. Geochimica et Cosmochimica Acta, 2008, 72(18): 4551-4564. doi: 10.1016/j.gca.2008.06.019
[12] FRIERDICH A J, CATALANO J G. Controls on Fe(II)-activated trace element release from goethite and hematite[J]. Environmental science & technology, 2012, 46(3): 1519-1526.
[13] XIE Y Y, LU G N, YE H, et al. Fulvic acid induced the liberation of chromium from CrO42−-substituted schwertmannite[J]. Chemical Geology, 2017, 475: 52-61. doi: 10.1016/j.chemgeo.2017.10.031
[14] BURTON E D, JOHNSTON S G, WATLING K, et al. Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite[J]. Environmental science & technology, 2010, 44(6): 2016-2021.
[15] ACERO P, AYORA C, TORRENTÓ C, et al. The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite - ScienceDirect[J]. Geochimica et Cosmochimica Acta, 2006, 70(16): 4130-4139. doi: 10.1016/j.gca.2006.06.1367
[16] LI J F, XIE Y Y, LU G N, et al. Effect of Cu(II) on the stability of oxyanion-substituted schwertmannite[J]. Environmental Science and Pollution Research, 2018, 25(16): 15492-15506. doi: 10.1007/s11356-018-1773-0
[17] BAO Y P, GUO C L, LU G N, et al. Role of microbial activity in Fe(III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine [J]. The Science of the total environment. 2018, 616-617: 647-657.
[18] HUANG F G, JIA S Y, LIU Y, et al. Reductive dissolution of ferrihydrite with the release of As(V) in the presence of dissolved S(-II)[J]. Journal of Hazardous Materials, 2015, 286: 291-297. doi: 10.1016/j.chemgeo.2015.11.020
[19] PEIFFER S, BEHRENDS T, HELLIGE K, et al. Pyrite formation and mineral transformation pathways upon sulfidation of ferric hydroxides depend on mineral type and sulfide concentration[J]. Chemical Geology, 2015, 400: 44-55. doi: 10.1016/j.chemgeo.2015.01.023
[20] KUMAR N, PACHECO J L, VINCENT N, et al. Sulfidation Mechanisms of Fe(III)-(oxyhydr) oxide Nanoparticles: A Spectroscopic Study[J]. Environmental Science:Nano, 2018, 5(4): 1012-1026. doi: 10.1039/C7EN01109A
[21] CAPPUYNS V, ALIAN V, VASSILIEVA E, et al. pH dependent leaching behavior of Zn, Cd, Pb, Cu and As from mining wastes and slags: Kinetics and mineralogical control[J]. Waste and Biomass Valorization, 2014, 5(3): 355-368. doi: 10.1007/s12649-013-9274-3
[22] 魏焕鹏, 党志, 易筱筠, 等. 大宝山矿区水体和沉积物中重金属的污染评价[J]. 环境工程学报, 2011, 5(9): 1943-1949.
[23] 陈梅芹. 酸根在金属硫化物矿区AMD污染河流中的迁移过程及其作用机制[D]. 广州: 华南理工大学, 2015.
[24] 郑顺安, 郑向群, 张铁亮, 等. 污染紫色土重金属的淋溶特征及释放动力学研究[J]. 水土保持学报, 2011, 25(4): 253-256. doi: 10.13870/j.cnki.stbcxb.2011.04.003
[25] JIN Z S, LIU T Z, YANG Y G, et al. Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition[J]. Ecotoxicology and environmental safety, 2014, 104: 43-50. doi: 10.1016/j.ecoenv.2014.02.003
[26] 林美群, 马少健, 王桂芳, 等. 环境因素对硫化矿尾矿重金属溶出影响的模拟试验[J]. 金属矿山, 2008(06): 108-111. doi: 10.3321/j.issn:1001-1250.2008.06.030
[27] POULTON S W. Sulfide oxidation and iron dissolution kinetics during the reaction of dissolved sulfide with ferrihydrite[J]. Chemical Geology, 2003, 202(1/2): 79-94.
[28] 刘玲, 刘海卿, 韩亮, 等. 铬渣动态淋滤重金属铬溶解释放规律研究[J]. 地球与环境, 2016, 44(5): 581-585. doi: 10.14050/j.cnki.1672-9250.2016.05.014
[29] GAO Y, HE J, LING W, et al. Effects of organic acids on copper and cadmium desorption from contaminated soils[J]. Environment International, 2003, 29(5): 613-618. doi: 10.1016/S0160-4120(03)00048-5
[30] CHIEN S H, CLAYTON W R. Application of Elovich Equation to the Kinetics of Phosphate Release and Sorption in Soils 1[J]. Soil Science Society of America Journal, 1980, 44(2): 265-268. doi: 10.2136/sssaj1980.03615995004400020013x
[31] FONSECA B, MAIO H, QUINTALAS C, et al. Retention of Cr(VI) and Pb(II) on a loamy sand soil[J]. Chemical Engineering Journal, 2009, 152(1): 212-219. doi: 10.1016/j.cej.2009.04.045
[32] AZZALI E, MARESCOTTI P, FRAU F, et al. Mineralogical and chemical variations of ochreous precipitates from acid sulphate waters (asw) at the Roia Montan gold mine (Romania)[J]. Environmental Earth Sciences, 2014, 72(9): 3567-3584. doi: 10.1007/s12665-014-3264-z
[33] 曹云全, 张双圣, 刘汉湖, 等. 煤矸石中重金属动态淋滤和静态浸泡溶出特征研究[J]. 河北工程大学学报(自然科学版), 2010, 27(1): 76-80.
[34] ZHANG S L, JIA S Y, YU B, et al. Sulfidization of As(V)-containing schwertmannite and its impact on arsenic mobilization[J]. Chemical Geology, 2016, 420: 270-279.