[1] |
GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review [J]. Chemical Engineering Journal, 2017, 310: 41-62. doi: 10.1016/j.cej.2016.10.064
|
[2] |
BOND T, HUANG J, TEMPLETON M R, et al. Occurrence and control of nitrogenous disinfection by-products in drinking water - A review [J]. Water Research, 2011, 45(15): 4341-4354. doi: 10.1016/j.watres.2011.05.034
|
[3] |
RICHARDSON S D, PLEWA M J, WAGNER E D, et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research [J]. Mutation Research/Reviews in Mutation Research, 2007, 636(1/2/3): 178-242.
|
[4] |
BOND T, TEMPLETON M R, GRAHAM N. Precursors of nitrogenous disinfection by-products in drinking water: A critical review and analysis [J]. Journal of Hazardous Materials, 2012, 235/236: 1-16. doi: 10.1016/j.jhazmat.2012.07.017
|
[5] |
DEBORDE M, von GUNTEN U. Reactions of chlorine with inorganic and organic compounds during water treatment—Kinetics and mechanisms: A critical review [J]. Water Research, 2008, 42(1/2): 13-51.
|
[6] |
ESCHER B I, ALLINSON M, ALTENBURGER R, et al. Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays [J]. Environmental Science & Technology, 2014, 48(3): 1940-1956.
|
[7] |
LIU X K, LIU R R, ZHU B, et al. Characterization of carbonyl disinfection by-products during ozonation, chlorination, and chloramination of dissolved organic matters [J]. Environmental Science & Technology, 2020, 54(4): 2218-2227.
|
[8] |
LIU X K, LIN Y F, RUAN T, et al. Identification of N-nitrosamines and nitrogenous heterocyclic byproducts during chloramination of aromatic secondary amine precursors [J]. Environmental Science & Technology, 2020, 54(20): 12949-12958.
|
[9] |
XIANG Y Y, GONSIOR M, SCHMITT-KOPPLIN P, et al. Influence of the UV/H2O2 advanced oxidation process on dissolved organic matter and the connection between elemental composition and disinfection byproduct formation [J]. Environmental Science & Technology, 2020, 54(23): 14964-14973.
|
[10] |
KRASNER S W, WEINBERG H S, RICHARDSON S D, et al. Occurrence of a new generation of disinfection byproducts [J]. Environmental Science & Technology, 2006, 40(23): 7175-7185.
|
[11] |
RICHARDSON S D, TERNES T A. Water analysis: Emerging contaminants and current issues [J]. Analytical Chemistry, 2018, 90(1): 398-428. doi: 10.1021/acs.analchem.7b04577
|
[12] |
PRASSE C, von GUNTEN U, SEDLAK D L. Chlorination of phenols revisited: Unexpected formation of α, β-unsaturated C4-dicarbonyl ring cleavage products [J]. Environmental Science & Technology, 2020, 54(2): 826-834.
|
[13] |
MARRON E L, van BUREN J, CUTHBERTSON A A, et al. Reactions of α, β-unsaturated carbonyls with free chlorine, free bromine, and combined chlorine [J]. Environmental Science & Technology, 2021, 55(5): 3305-3312.
|
[14] |
van BUREN J, PRASSE C, MARRON E L, et al. Ring-cleavage products produced during the initial phase of oxidative treatment of alkyl-substituted aromatic compounds [J]. Environmental Science & Technology, 2020, 54(13): 8352-8361.
|
[15] |
PRASSE C, FORD B, NOMURA D K, et al. Unexpected transformation of dissolved phenols to toxic dicarbonyls by hydroxyl radicals and UV light [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(10): 2311-2316. doi: 10.1073/pnas.1715821115
|
[16] |
KELLERT M, WAGNER S, LUTZ U, et al. Biomarkers of furan exposure by metabolic profiling of rat urine with liquid chromatography-tandem mass spectrometry and principal component analysis [J]. Chemical Research in Toxicology, 2008, 21(3): 761-768. doi: 10.1021/tx7004212
|
[17] |
CHEN L J, HECHT S S, PETERSON L A. Characterization of amino acid and glutathione adducts of cis-2-butene-1,4-dial, a reactive metabolite of furan [J]. Chemical Research in Toxicology, 1997, 10(8): 866-874.
|
[18] |
PETERSON L A, CUMMINGS M E, CHAN J Y, et al. Identification of a cis-2-butene-1, 4-dial-derived glutathione conjugate in the urine of furan-treated rats [J]. Chemical Research in Toxicology, 2006, 19(9): 1138-1141. doi: 10.1021/tx060111x
|
[19] |
GATES L A, LU D, PETERSON L A. Trapping of cis-2-butene-1, 4-dial to measure furan metabolism in human liver microsomes by cytochrome P450 enzymes [J]. Drug Metabolism and Disposition:the Biological Fate of Chemicals, 2012, 40(3): 596-601. doi: 10.1124/dmd.111.043679
|
[20] |
CHURCHWELL M I, SCHERI R C, von TUNGELN L S, et al. Evaluation of serum and liver toxicokinetics for furan and liver DNA adduct formation in male Fischer 344 rats [J]. Food and Chemical Toxicology, 2015, 86: 1-8. doi: 10.1016/j.fct.2015.08.029
|
[21] |
CHEN L J, HECHT S S, PETERSON L A. Identification of cis-2-butene-1, 4-dial as a microsomal metabolite of furan [J]. Chemical Research in Toxicology, 1995, 8(7): 903-906. doi: 10.1021/tx00049a001
|
[22] |
ACERO J L, PIRIOU P, von GUNTEN U. Kinetics and mechanisms of formation of bromophenols during drinking water chlorination: Assessment of taste and odor development [J]. Water Research, 2005, 39(13): 2979-2993. doi: 10.1016/j.watres.2005.04.055
|
[23] |
PIRIOU P, SOULET C, ACERO J L, et al. Understanding medicinal taste and odour formation in drinking waters [J]. Water Science and Technology, 2007, 55(5): 85-94. doi: 10.2166/wst.2007.166
|
[24] |
WANG L M, WU R R, XU C. Atmospheric oxidation mechanism of benzene. Fates of alkoxy radical intermediates and revised mechanism [J]. The Journal of Physical Chemistry. A, 2013, 117(51): 14163-14168. doi: 10.1021/jp4101762
|
[25] |
WU R R, PAN S S, LI Y, et al. Atmospheric oxidation mechanism of toluene [J]. The Journal of Physical Chemistry. A, 2014, 118(25): 4533-4547. doi: 10.1021/jp500077f
|
[26] |
黄晓梅, 吴杨, 崔君涛, 等. 高分辨质谱在氯化石蜡分析方法中的应用 [J]. 分析化学, 2019, 47(3): 323-334. doi: 10.1016/S1872-2040(19)61144-8
HUANG X M, WU Y, CUI J T, et al. Applications of high-resolution mass spectrometry in determination of chlorinated paraffins [J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 323-334(in Chinese). doi: 10.1016/S1872-2040(19)61144-8
|
[27] |
黄林艳, 鲁炳闻, 赵彦辉, 等. 高效液相色谱分析四溴双酚A标准样品方法优化及应用 [J]. 环境化学, 2020, 39(12): 3524-3530.
HUANG L Y, LU B W, ZHAO Y H, et al. Optimization and application of HPLC method for tetrabromobisphenol A reference material analysis [J]. Environmental Chemistry, 2020, 39(12): 3524-3530(in Chinese).
|
[28] |
孙腾飞, 向垒, 陈雷, 等. 环境水样及固相样品中全氟化合物分析方法研究进展 [J]. 分析化学, 2017, 45(4): 601-610. doi: 10.11895/j.issn.0253-3820.160817
SUN T F, XIANG L, CHEN L, et al. Research progresses of determination of perfluorinated compounds in environmental water and solid samples [J]. Chinese Journal of Analytical Chemistry, 2017, 45(4): 601-610(in Chinese). doi: 10.11895/j.issn.0253-3820.160817
|
[29] |
康春莉, 王英, 杜尧国, 等. 水体中挥发酚测定方法的改进 [J]. 分析化学, 2000, 28(7): 872-875. doi: 10.3321/j.issn:0253-3820.2000.07.019
KANG C L, WANG Y, DU Y G, et al. Improvement on the determination of volatile phenols in water [J]. Chinese Journal of Analytieal Chemistry, 2000, 28(7): 872-875(in Chinese). doi: 10.3321/j.issn:0253-3820.2000.07.019
|
[30] |
高婷婷, 杜鹏, 徐泽琼, 等. 污水中常见违禁药物分析方法优化及验证 [J]. 环境科学, 2017, 38(1): 201-211.
GAO T T, DU P, XU Z Q, et al. Optimization and validation of the analytical method to detect common illicit drugs in wastewater [J]. Environmental Science, 2017, 38(1): 201-211(in Chinese).
|
[31] |
寇弘儒, 刘士峰, 孙艳超, 等. 基于两种前处理对苹果叶片中虫酰肼残留的液相分析方法 [J]. 环境化学, 2020, 39(1): 179-187. doi: 10.7524/j.issn.0254-6108.2019061201
KOU H R, LIU S F, SUN Y C, et al. Liquid phase analysis of tebufenozide residues in apple leaves based on two pretreatments [J]. Environmental Chemistry, 2020, 39(1): 179-187(in Chinese). doi: 10.7524/j.issn.0254-6108.2019061201
|
[32] |
ZHANG Z P, ZHANG R J, XIAO H, et al. Development of a standardized food model for studying the impact of food matrix effects on the gastrointestinal fate and toxicity of ingested nanomaterials [J]. NanoImpact, 2019, 13: 13-25. doi: 10.1016/j.impact.2018.11.002
|
[33] |
CAPPIELLO A, FAMIGLINI G, PALMA P, et al. Overcoming matrix effects in liquid chromatography-mass spectrometry [J]. Analytical Chemistry, 2008, 80(23): 9343-9348. doi: 10.1021/ac8018312
|