[1] ZHANG Y F, LIANG J, ZENG G M, et al. How climate change and eutrophication interact with microplastic pollution and sediment resuspension in shallow lakes: A review [J]. The Science of the Total Environment, 2020, 705: 135979. doi: 10.1016/j.scitotenv.2019.135979
[2] INGRID C, MARTIN W. Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management [M]. CRC Press, 2021.
[3] RELLÁN S, OSSWALD J, SAKER M, et al. First detection of anatoxin-a in human and animal dietary supplements containing cyanobacteria [J]. Food and Chemical Toxicology, 2009, 47(9): 2189-2195. doi: 10.1016/j.fct.2009.06.004
[4] SVIRČEV Z, LALIĆ D, BOJADŽIJA SAVIĆ G, et al. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings [J]. Archives of Toxicology, 2019, 93(9): 2429-2481. doi: 10.1007/s00204-019-02524-4
[5] CHEN W, JIA Y L, LI E H, et al. Soil-based treatments of mechanically collected cyanobacterial blooms from Lake Taihu: Efficiencies and potential risks [J]. Environmental Science & Technology, 2012, 46(24): 13370-13376.
[6] AI Y H, LEE S, LEE J. Drinking water treatment residuals from cyanobacteria bloom-affected areas: Investigation of potential impact on agricultural land application [J]. The Science of the Total Environment, 2020, 706: 135756. doi: 10.1016/j.scitotenv.2019.135756
[7] LIANG C J, WANG W M, WANG Y. Effect of irrigation with microcystins-contaminated water on growth, yield and grain quality of rice (Oryza sativa) [J]. Environmental Earth Sciences, 2016, 75(6): 1-10.
[8] GU Y F, LIANG C J. Responses of antioxidative enzymes and gene expression in Oryza sativa L and Cucumis sativus L seedlings to microcystins stress [J]. Ecotoxicology and Environmental Safety, 2020, 193: 110351. doi: 10.1016/j.ecoenv.2020.110351
[9] ZHU J Z, REN X Q, LIU H Y, et al. Effect of irrigation with microcystins-contaminated water on growth and fruit quality of Cucumis sativus L. and the health risk [J]. Agricultural Water Management, 2018, 204: 91-99. doi: 10.1016/j.agwat.2018.04.011
[10] LIANG C J, MA X D, LIU H Y. Effect of microcystins at different rice growth stages on its yield, quality, and safety [J]. Environmental Science and Pollution Research, 2021, 28(11): 13942-13954. doi: 10.1007/s11356-020-11642-x
[11] ZHANG Y Y, WHALEN J K, SAUVÉ S. Phytotoxicity and bioconcentration of microcystins in agricultural plants: Meta-analysis and risk assessment [J]. Environmental Pollution, 2021, 272: 115966. doi: 10.1016/j.envpol.2020.115966
[12] KAMINSKI A, BOBER B, CHRAPUSTA E, et al. Phytoremediation of anatoxin-a by aquatic macrophyte Lemna trisulca L [J]. Chemosphere, 2014, 112: 305-310. doi: 10.1016/j.chemosphere.2014.04.064
[13] LIN Y F, LIN H T, ZHANG S, et al. The role of active oxygen metabolism in hydrogen peroxide-induced pericarp browning of harvested longan fruit [J]. Postharvest Biology and Technology, 2014, 96: 42-48. doi: 10.1016/j.postharvbio.2014.05.001
[14] 孙亮亮. 镧对拟南芥种子萌发和早期根系发育影响的生理与分子机制研究[D]. 太谷: 山西农业大学, 2018. SUN L L. Physiological and molecular mechanisms of La on seed germination and early root development of Arabidopsis thaliana[D]. Taigu: Shanxi Agricultural University, 2018(in Chinese).
[15] MARTENS S. Handbook of cyanobacterial monitoring and cyanotoxin analysis [J]. Advances in Oceanography and Limnology, 2017, 8(2): 242.
[16] 张清航, 张永涛. 植物体内丙二醛(MDA)含量对干旱的响应 [J]. 林业勘查设计, 2019(1): 110-112. doi: 10.3969/j.issn.1673-4505.2019.01.052 ZHANG Q H, ZHANG Y T. Study on response to drought stress of MDA content in plants [J]. Forest Investigation Design, 2019(1): 110-112(in Chinese). doi: 10.3969/j.issn.1673-4505.2019.01.052
[17] 曹翠玲, 麻鹏达. 植物生理学教学实验指导[M]. 杨凌: 西北农林科技大学出版社, 2016. CAO C L, MA P D. Experimental Study on plant Physiology teaching [M]. Yangling: Northwest A&F University Press, 2016(in Chinese).
[18] KUMAR A, PRASAD M N V, MOHAN MURALI ACHARY V, et al. Elucidation of lead-induced oxidative stress in Talinum triangulare roots by analysis of antioxidant responses and DNA damage at cellular level [J]. Environmental Science and Pollution Research, 2013, 20(7): 4551-4561. doi: 10.1007/s11356-012-1354-6
[19] 关美艳. 一氧化氮清除系统在拟南芥应答镉胁迫过程中的作用及其机制[D]. 杭州: 浙江大学, 2018. GUAN M Y. The mechanisms of nitric oxide scavenging systems in regulating Arabidopsis response to cadmium stress[D]. Hangzhou: Zhejiang University, 2018(in Chinese).
[20] ZHANG B J, BU J J, LIANG C J. Regulation of nitrogen and phosphorus absorption by plasma membrane H+ ATPase in rice roots under simulated acid rain [J]. International Journal of Environmental Science and Technology, 2017, 14(1): 101-112. doi: 10.1007/s13762-016-1125-x
[21] STOJNIĆ S, KOVAČEVIĆ B, KEBERT M, et al. Genetic differentiation in functional traits among wild cherry (Prunus avium L. ) half-sib lines [J]. Journal of Forestry Research, 2022, 33(3): 991-1003. doi: 10.1007/s11676-021-01390-0
[22] 顾艳芳, 邓媛, 梁婵娟. 微囊藻毒素对黄瓜幼苗抗氧化酶及其同工酶的影响 [J]. 环境化学, 2020, 39(12): 3402-3409. GU Y F, DENG Y, LIANG C J. Effect of microcystins on antioxidative enzymes activities and isozymes pattern in cucumber seedlings [J]. Environmental Chemistry, 2020, 39(12): 3402-3409(in Chinese).
[23] CAO Q, STEINMAN A D, WAN X, et al. Combined toxicity of microcystin-LR and copper on lettuce (Lactuca sativa L. ) [J]. Chemosphere, 2018, 206: 474-482. doi: 10.1016/j.chemosphere.2018.05.051
[24] RASTOGI R P, SINHA R P, INCHAROENSAKDI A. The cyanotoxin-microcystins: Current overview [J]. Reviews in Environmental Science and Bio/Technology, 2014, 13(2): 215-249. doi: 10.1007/s11157-014-9334-6
[25] LIANG C J, LIU H Y. Response of hormone in rice seedlings to irrigation contaminated with cyanobacterial extract containing microcystins [J]. Chemosphere, 2020, 256: 127157. doi: 10.1016/j.chemosphere.2020.127157
[26] CHRISTENSEN V G, KHAN E. Freshwater neurotoxins and concerns for human, animal, and ecosystem health: A review of anatoxin-a and saxitoxin [J]. The Science of the Total Environment, 2020, 736: 139515. doi: 10.1016/j.scitotenv.2020.139515
[27] 杨颖丽, 安黎哲, 张立新. NaCl对小麦根质膜NADPH氧化酶活性的影响 [J]. 西北植物学报, 2006, 26(12): 2463-2467. doi: 10.3321/j.issn:1000-4025.2006.12.010 YANG Y L, AN L Z, ZHANG L X. NaCl effect on plasmalemma NADPH oxidase activity of wheat roots [J]. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(12): 2463-2467(in Chinese). doi: 10.3321/j.issn:1000-4025.2006.12.010
[28] 张腾国, 赖晶, 李萍, 等. 不同处理下油菜RbohA、RbohD基因的表达特性分析 [J]. 生态学杂志, 2019, 38(1): 173-180. doi: 10.13292/j.1000-4890.201901.024 ZHANG T G, LAI J, LI P, et al. Expression analysis of RbohA and RbohD genes in Brassica campestris under different treatments [J]. Chinese Journal of Ecology, 2019, 38(1): 173-180(in Chinese). doi: 10.13292/j.1000-4890.201901.024
[29] ZHANG J Z, WANG L H, ZHOU Q, et al. Reactive oxygen species initiate a protective response in plant roots to stress induced by environmental bisphenol A [J]. Ecotoxicology and Environmental Safety, 2018, 154: 197-205. doi: 10.1016/j.ecoenv.2018.02.020
[30] PÉREZ-CHACA M V, RODRÍGUEZ-SERRANO M, MOLINA A S, et al. Cadmium induces two waves of reactive oxygen species in Glycine max (L. ) roots [J]. Plant, Cell & Environment, 2014, 37(7): 1672-1687.
[31] SHABIR H, VINAY K, VARSHA S, et al. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants [J]. Crop Journal, 2016, 4(3): 162-176. doi: 10.1016/j.cj.2016.01.010
[32] 朱婷婷, 王彦霞, 裴丽丽, 等. 植物蛋白激酶与作物非生物胁迫抗性的研究 [J]. 植物遗传资源学报, 2017, 18(4): 763-770. doi: 10.13430/j.cnki.jpgr.2017.04.020 ZHU T T, WANG Y X, PEI L L, et al. Research progress of plant protein kinase and abiotic stress resistance [J]. Journal of Plant Genetic Resources, 2017, 18(4): 763-770(in Chinese). doi: 10.13430/j.cnki.jpgr.2017.04.020
[33] LIANG C J, ZHANG Y Q, REN X Q. Calcium regulates antioxidative isozyme activity for enhancing rice adaption to acid rain stress [J]. Plant Science, 2021, 306: 110876. doi: 10.1016/j.plantsci.2021.110876
[34] MA Y J, REN X Q, LIANG C J. Exogenous Ca2+ enhances antioxidant defense in rice to simulated acid rain by regulating ascorbate peroxidase and glutathione reductase [J]. Planta, 2021, 254(2): 41-44. doi: 10.1007/s00425-021-03679-0
[35] CHRISTINE H F, GRAHAM N. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria [J]. Physiologia Plantarum, 2003, 119(3): 355-364. doi: 10.1034/j.1399-3054.2003.00223.x
[36] WANG Z, ZHANG J Q, LI E H, et al. Combined toxic effects and mechanisms of microsystin-LR and copper on Vallisneria Natans (Lour. ) Hara seedlings [J]. Journal of Hazardous Materials, 2017, 328: 108-116. doi: 10.1016/j.jhazmat.2016.12.059
[37] LI Q, GU P, ZHANG C, et al. Combined toxic effects of anatoxin-a and microcystin-LR on submerged macrophytes and biofilms [J]. Journal of Hazardous Materials, 2020, 389: 122053. doi: 10.1016/j.jhazmat.2020.122053
[38] 张雪薇. 铜绿微囊藻与水华鱼腥藻种间竞争机制的初步研究[D]. 南京: 南京大学, 2012. ZHANG X W. The preliminary study of the mechanism of competition between Microcystis aeruginosa and Anabaena flos-aquae[D]. Nanjing: Nanjing University, 2012(in Chinese).