[1] |
ZHU Q, TAO F, PAN Q. Fast and selective removal of oils from water surface via highly hydrophobic core-shell Fe2O3@C nanoparticles under magnetic field[J]. ACS Applied Materials and Interfaces, 2010, 2(11): 3141-3146. doi: 10.1021/am1006194
|
[2] |
MARTINEAU D, LAGACE A, BELAND P, et al. Pathology of stranded beluga whales (Delphinapterus leucas) from the St. Lawrence Estuary, Quebec, Canada[J]. Journal of General Plant Pahtology, 1988, 98(7): 287-311.
|
[3] |
JIN H M, KIM J M, LEE H J. Alteromonas as a key agent of polycyclic aromatic hydrocarbon biodegradation in crude oil-contaminated coastal sediment[J]. Science and Technology, 2012, 46: 7731-7740. doi: 10.1021/es3018545
|
[4] |
FUCHS G, BOLL M, HEIDER J. Microbial degradation of aromatic compounds-from one strategy to four[J]. Nature Reviews Microbiology, 2011, 9(11): 803-816. doi: 10.1038/nrmicro2652
|
[5] |
LEISOLA M, MEUSSDOERFFER F. Production and identification of extracellular oxidases of Phanerochaete chrysosporium[J]. Journal of Biotechnology, 1985(6): 379-382.
|
[6] |
OBRISTA D, ZIELINSKAA B, PERLINGER J A, et al. Accumulation of polyeyelie aromatie hydrocarbons (PAHs) and oxygenated PAHs (OPAHs) in organie and mineral soil horizons from four U. S. remote forests PAHs (OPAHs) in organie and mineral soil horizons from four U. S. remote forests[J]. Chemosphere, 2015, 134: 98-105. doi: 10.1016/j.chemosphere.2015.03.087
|
[7] |
CHAN K H, CHU W. The prediction of partitioning coefficients for chemicals causing environmental concern[J]. Science of the Total Environment[J]. 2000, 248(1): 1-10.
|
[8] |
PRINCE R C. Bioremediation of marine oil spills[J]. Oil & Gas Science & Technology, 2004, 151(4): 495-512.
|
[9] |
HEDLUND B P, STALEY J T. Isolation and characterization of Pseudo Alteromonas strains with divergent polycyclic aromatic hydrocarbon catabolic properties[J]. Environmental Microbiology. 2006, 8(1): 178-182.
|
[10] |
DYKSTERHOUSE S E, GRAY J P, HERWIG R P, et al. Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments[J]. International Journal of Systematic and Evolutionary Microbiology, 1995, 45(1): 116-123.
|
[11] |
王佳楠, 石妍云, 郑力燕, 等. 石油降解菌的分离鉴定及4株芽胞杆菌种间效应[J]. 环境科学, 2015, 36(6): 2245-2251. doi: 10.13227/j.hjkx.2015.06.044
|
[12] |
LI C H, WONG Y S, WANG H Y, et al. Anaerobic biodegradation of PAHs in mangrove sediment with amendment of NaHCO3[J]. Journal of Environmental Sciences, 2015, 30(4): 148-156.
|
[13] |
YUAN S Y, CHANG B V. Anaerobic degradation of five polycyclic aromatic hydrocarbons from river sediment in Taiwan[J]. Jounal of Environmental Science and Health, Part B, 2007, 42(1): 63-69. doi: 10.1080/03601230601020860
|
[14] |
CHANG B V, CHANG I T, YUAN S Y. Anaerobic degradation of phenanthrene and pyrene in mangrove sediment[J]. Bulletin of Environmental Contamination and Toxicology, 2008, 80(2): 145-149. doi: 10.1007/s00128-007-9333-1
|
[15] |
ZHANG W, WANG H, ZHANG R, et al. Bacterial communities in PAH contaminated soils at an electronic-waste processing center in China[J]. Ecotoxicology, 2010, 19(1): 96-104. doi: 10.1007/s10646-009-0393-3
|
[16] |
SONG X H, XU Y, LI G M, et a1. Isolation, characterization of Rhodococcus sp. P14 capable of degrading high-molecular-weight polycyclic aromatic hydrocarbons and aliphatic hydrocarbons[J]. Marine Pollution Bulletin, 2011, 62(10): 2122-2128. doi: 10.1016/j.marpolbul.2011.07.013
|
[17] |
张宏波, 林爱军, 刘爽, 等. 芘高效降解菌的分离鉴定及其降解特性研究[J]. 环境科学, 2010, 31(1): 243-248. doi: 10.13227/j.hjkx.2010.01.032
|
[18] |
王蕾, 聂麦茜, 王志盈, 等. 一株芽胞杆菌和一株黄杆菌代谢芘的摄取方式解析[J]. 环境科学学报, 2009, 29(5): 924-929. doi: 10.3321/j.issn:0253-2468.2009.05.005
|
[19] |
CHEN Q, LI J, MEI L, et al. Study on the biodegradation of crude oil by free and immobilized bacterial consortium in marine environment[J]. Plos One, 2017, 12(3): 1-23.
|
[20] |
张建峰, 苏凤宜, 邢新会. 邻苯二酚2, 3-双加氧酶在恶臭假单胞杆菌整细胞催化中的酶活检测方法[J]. 化工学报, 2008(2): 450-455. doi: 10.3321/j.issn:0438-1157.2008.02.030
|
[21] |
程晓宇, 刘伟伟, 许楹, 等. 中国东海和南海海域可培养烃类降解细菌的筛选及功能[J]. 微生物学通报, 2019, 46(5): 975-985. doi: 10.13344/j.microbiol.china.180685
|
[22] |
CAO B, MA T, REN Y, et al. Complete genome sequence of Pusillimonas sp. T7-7, a cold-tolerant diesel oil degrading bacterium isolated from the Bohai Sea in China[J]. Bacteriol. 2011, 193 (15): 4021-4022.
|
[23] |
NZILA A, RAMIREZ C O, MUSA M M, SANKARA S, et al. Pyrene biodegradation and proteomic analysis in Achromobacter xylosoxidans, PY4 strain[J]. International Biodeterioration & Biodegradation. 2018, 130: 40-47.
|
[24] |
SOHN J H, KWON K K, KANG J H, et al. Novosphingobium pentaromativorans sp. nov. , a high molecular mass polycyclic aromatic hydrocarbon degrading bacterium isolated from estuarine sediment[J]. International journal of systematic and evolutionary microbiology[J]. 2004, 54 (5), 1483-1487
|
[25] |
LYU Y, ZHENG W, ZHENG T, TIAN Y. Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1[J]. PloS One 2014, 9(10): 1.
|
[26] |
TONY H, AMEER K, RISKY K, et al. Biodegradation of pyrene by Candida sp. S1 under high salinity conditions[J]. Bioprocess & Biosystems Engineering, 2017, 40(9): 1411-1418.
|
[27] |
MARTIN B C, GEORGE S J, PRICE C A, et al. The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: Current knowledge and future directions[J]. Science of the Total Environment, 2014, 472(15): 642-653.
|
[28] |
REDA, BAYOUMI A, ASHRAF, et al. Optimization of bacterial biodegradation of toluene and phenol under different nutritional and environmental conditions[J]. Research Journal of Applied Sciences, 2010, 6(8): 1086-1095.
|
[29] |
JAEKEL U, MUSAT N, ADAM B, et al. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps[J]. The ISME Journal, 2013, 7(5): 885-895. doi: 10.1038/ismej.2012.159
|
[30] |
XIE C J, FAN B, SUN Q Q, et al. Enhancement the enzymatic activity of phenol-degrading microbes immobilized on agricultural residues during the biodegradation of phenol in petrochemical wastewater[J]. Applied Mechanics and Materials, 2015, 737: 549-556. doi: 10.4028/www.scientific.net/AMM.737.549
|
[31] |
KAROLINA K, ANNA K, MAGDALENA W, et al. Biological inspirations: Iron complexes mimicking the catechol dioxygenases[J]. Materials, 2021, 14(12): 3250. doi: 10.3390/ma14123250
|
[32] |
KITA A, KITA S, FUJISAWA I, et al. An archetypical extradiol-cleaving catecholic dioxygenase: the crystal structure of catechol 2, 3-dioxygenase (metapyrocatechase) from Pseudomonas putida mt-2[J]. Structure, 1999, 7(1): 25-34. doi: 10.1016/S0969-2126(99)80006-9
|
[33] |
KOJIMA Y, ITADA N, HAYAISHI O. Metapyrocatechase: A new catechol-cleaving enzyme[J]. Journal of Biological Chemistry, 1961, 236(8): 2223-2228. doi: 10.1016/S0021-9258(18)64061-X
|