[1] MA S J, JING J N, LIU P Y, et al. High selectivity and effectiveness for removal of tetracycline and its related drug resistance in food wastewater through schwertmannite/graphene oxide catalyzed photo-Fenton-like oxidation [J]. Journal of Hazardous Materials, 2020, 392: 122437. doi: 10.1016/j.jhazmat.2020.122437
[2] QIAO X X, LIU X J, ZHANG W Y, et al. Superior photo-Fenton activity towards chlortetracycline degradation over novel g-C3N4 nanosheets/schwertmannite nanocomposites with accelerated Fe(III)/Fe(II) cycling [J]. Separation and Purification Technology, 2021, 279: 119760. doi: 10.1016/j.seppur.2021.119760
[3] MARTÍNEZ-CARBALLO E, GONZÁLEZ-BARREIRO C, SCHARF S, et al. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria [J]. Environmental Pollution (Barking, Essex:1987), 2007, 148(2): 570-579. doi: 10.1016/j.envpol.2006.11.035
[4] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance [J]. Environmental Science & Technology, 2015, 49(11): 6772-6782.
[5] LIU J J, DIAO Z H, LIU C M, et al. Synergistic reduction of copper (II) and oxidation of norfloxacin over a novel sewage sludge-derived char-based catalyst: Performance, fate and mechanism [J]. Journal of Cleaner Production, 2018, 182: 794-804. doi: 10.1016/j.jclepro.2018.02.045
[6] DIAO Z H, JIN J C, ZOU M Y, et al. Simultaneous degradation of amoxicillin and norfloxacin by TiO2@nZVI composites coupling with persulfate: Synergistic effect, products and mechanism [J]. Separation and Purification Technology, 2022, 278: 119620.
[7] NIE X, LI G Y, LI S S, et al. Highly efficient adsorption and catalytic degradation of ciprofloxacin by a novel heterogeneous Fenton catalyst of hexapod-like pyrite nanosheets mineral clusters [J]. Applied Catalysis B:Environmental, 2022, 300: 120734. doi: 10.1016/j.apcatb.2021.120734
[8] XU X R, LI X Y, LI X Z, et al. Degradation of melatonin by UV, UV/H2O2, Fe2+/H2O2 and UV/Fe2+/H2O2 processes [J]. Separation and Purification Technology, 2009, 68(2): 261-266. doi: 10.1016/j.seppur.2009.05.013
[9] GAO Y W, WANG Y, ZHANG H. Removal of Rhodamine B with Fe-supported bentonite as heterogeneous photo-Fenton catalyst under visible irradiation [J]. Applied Catalysis B:Environmental, 2015, 178: 29-36. doi: 10.1016/j.apcatb.2014.11.005
[10] MATTA R, HANNA K, CHIRON S. Fenton-like oxidation of 2, 4, 6-trinitrotoluene using different iron minerals [J]. Science of the Total Environment, 2007, 385(1/2/3): 242-251.
[11] BAE S, KIM D, LEE W. Degradation of diclofenac by pyrite catalyzed Fenton oxidation [J]. Applied Catalysis B:Environmental, 2013, 134/135: 93-102. doi: 10.1016/j.apcatb.2012.12.031
[12] DIAO Z H, XU X R, LIU F M, et al. Photocatalytic degradation of malachite green by pyrite and its synergism with Cr(VI) reduction: Performance and reaction mechanism [J]. Separation and Purification Technology, 2015, 154: 168-175. doi: 10.1016/j.seppur.2015.09.027
[13] MASHAYEKH-SALEHI A, AKBARMOJENI K, ROUDBARI A, et al. Use of mine waste for H2O2-assisted heterogeneous Fenton-like degradation of tetracycline by natural pyrite nanoparticles: Catalyst characterization, degradation mechanism, operational parameters and cytotoxicity assessment [J]. Journal of Cleaner Production, 2021, 291: 125235. doi: 10.1016/j.jclepro.2020.125235
[14] FENG Y, LI H L, LIN L, et al. Degradation of 1, 4-dioxane via controlled generation of radicals by pyrite-activated oxidants: Synergistic effects, role of disulfides, and activation sites [J]. Chemical Engineering Journal, 2018, 336: 416-426. doi: 10.1016/j.cej.2017.12.011
[15] DIAO Z H, LIU J J, HU Y X, et al. Comparative study of Rhodamine B degradation by the systems pyrite/H2O2 and pyrite/persulfate: Reactivity, stability, products and mechanism [J]. Separation and Purification Technology, 2017, 184: 374-383. doi: 10.1016/j.seppur.2017.05.016
[16] DIAO Z H, DONG F X, YAN L, et al. Synergistic oxidation of Bisphenol A in a heterogeneous ultrasound-enhanced sludge biochar catalyst/persulfate process: Reactivity and mechanism [J]. Journal of Hazardous Materials, 2020, 384: 121385. doi: 10.1016/j.jhazmat.2019.121385
[17] HOU L W, WANG L G, ROYER S, et al. Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst [J]. Journal of Hazardous Materials, 2016, 302: 458-467. doi: 10.1016/j.jhazmat.2015.09.033
[18] DIAO Z H, LIN Z Y, CHEN X Z, et al. Ultrasound-assisted heterogeneous activation of peroxymonosulphate by natural pyrite for 2, 4-diclorophenol degradation in water: Synergistic effects, pathway and mechanism [J]. Chemical Engineering Journal, 2020, 389: 123771. doi: 10.1016/j.cej.2019.123771
[19] PULICHARLA R, BRAR S K, ROUISSI T, et al. Degradation of chlortetracycline in wastewater sludge by ultrasonication, Fenton oxidation, and Ferro-sonication [J]. Ultrasonics Sonochemistry, 2017, 34: 332-342. doi: 10.1016/j.ultsonch.2016.05.042
[20] SHAO Y Y, GAO Y, YUE Q Y, et al. Degradation of chlortetracycline with simultaneous removal of copper (II) from aqueous solution using wheat straw-supported nanoscale zero-valent iron [J]. Chemical Engineering Journal, 2020, 379: 122384. doi: 10.1016/j.cej.2019.122384
[21] FAN Y, ZHOU Z Y, FENG Y, et al. Degradation mechanisms of ofloxacin and cefazolin using peroxymonosulfate activated by reduced graphene oxide-CoFe2O4 composites [J]. Chemical Engineering Journal, 2020, 383: 123056. doi: 10.1016/j.cej.2019.123056
[22] DIAO Z H, CHU W. FeS2 assisted degradation of atrazine by bentonite-supported nZVI coupling with hydrogen peroxide process in water: Performance and mechanism [J]. Science of the Total Environment, 2021, 754: 142155. doi: 10.1016/j.scitotenv.2020.142155