[1] |
KULMALA M. Atmospheric chemistry: China's choking cocktail [J]. Nature, 2015, 526(7574): 497-499. doi: 10.1038/526497a
|
[2] |
Singh A. WHO housing and health guidelines [M]. 2018: 6-9.
|
[3] |
ABBATT J P D, WANG C. The atmospheric chemistry of indoor environments [J]. Environmental Science:Processes & Impacts, 2020, 22(1): 25-48.
|
[4] |
GLIGOROVSKI S, STREKOWSKI R, BARBATI S, et al. Environmental implications of hydroxyl radicals (•OH) [J]. Chemical Reviews, 2015, 115(24): 13051-13092. doi: 10.1021/cr500310b
|
[5] |
ALVAREZ E G, AMEDRO D, AFIF C, et al. Unexpectedly high indoor hydroxyl radical concentrations associated with nitrous acid [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(33): 13294-13299. doi: 10.1073/pnas.1308310110
|
[6] |
WESCHLER C J. Ozone in indoor environments: Concentration and chemistry [J]. Indoor Air, 2000, 10(4): 269-288. doi: 10.1034/j.1600-0668.2000.010004269.x
|
[7] |
WISTHALER A, WESCHLER C J. Reactions of ozone with human skin lipids: Sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(15): 6568-6575. doi: 10.1073/pnas.0904498106
|
[8] |
NAZAROFF W W, WESCHLER C J. Indoor ozone: Concentrations and influencing factors [J]. Indoor Air, 2022, 32(1): e12942.
|
[9] |
ZHOU S, YOUNG C J, VANDENBOER T C, et al. Role of location, season, occupant activity, and chemistry in indoor ozone and nitrogen oxide mixing ratios [J]. Environmental Science:Processes & Impacts, 2019, 21(8): 1374-1383.
|
[10] |
COLLINS D B, HEMS R F, ZHOU S M, et al. Evidence for gas-surface equilibrium control of indoor nitrous acid [J]. Environmental Science & Technology, 2018, 52(21): 12419-12427.
|
[11] |
WISTHALER A, TAMÁS G, WYON D P, et al. Products of ozone-initiated chemistry in a simulated aircraft environment [J]. Environmental Science & Technology, 2005, 39(13): 4823-4832.
|
[12] |
YAO M Y, ZHAO B. Surface removal rate of ozone in residences in China [J]. Building and Environment, 2018, 142: 101-106. doi: 10.1016/j.buildenv.2018.06.010
|
[13] |
LEE K, VALLARINO J, DUMYAHN T, et al. Ozone decay rates in residences [J]. Journal of the Air & Waste Management Association, 1999, 49(10): 1238-1244.
|
[14] |
WESCHLER C J, WISTHALER A, COWLIN S, et al. Ozone-initiated chemistry in an occupied simulated aircraft cabin [J]. Environmental Science & Technology, 2007, 41(17): 6177-6184.
|
[15] |
DEMING B L, ZIEMANN P J. Quantification of alkenes on indoor surfaces and implications for chemical sources and sinks [J]. Indoor Air, 2020, 30(5): 914-924. doi: 10.1111/ina.12662
|
[16] |
SHEN J L, GAO Z. Ozone removal on building material surface: A literature review [J]. Building and Environment, 2018, 134(15): 205-217. doi: 10.1016/j.buildenv.2018.02.046
|
[17] |
ZENG J F, MEKIC M, XU X, et al. A novel insight into the ozone-skin lipid oxidation products observed by secondary electrospray ionization high-resolution mass spectrometry [J]. Environmental Science & Technology, 2020, 54(21): 13478-13487.
|
[18] |
WESCHLER C J. Roles of the human occupant in indoor chemistry [J]. Indoor Air, 2016, 26(1): 6-24. doi: 10.1111/ina.12185
|
[19] |
BELL M L, MCDERMOTT A, ZEGER S L, et al. Ozone and short-term mortality in 95 US urban communities, 1987-2000 [J]. JAMA, 2004, 292(19): 2372-2378. doi: 10.1001/jama.292.19.2372
|
[20] |
BELL M L, DOMINICI F, SAMET J M. A meta-analysis of time-series studies of ozone and mortality with comparison to the national morbidity, mortality, and air pollution study [J]. Epidemiology , 2005, 16(4): 436-445. doi: 10.1097/01.ede.0000165817.40152.85
|
[21] |
DI Q, ROWLAND S, KOUTRAKIS P, et al. A hybrid model for spatially and temporally resolved ozone exposures in the continental United States [J]. Journal of the Air & Waste Management Association, 2017, 67(1): 39-52.
|
[22] |
SUN H F, LIU H, HAN J R, et al. Chemical cleaning-associated generation of dissolved organic matter and halogenated byproducts in ceramic MBR: Ozone versus hypochlorite [J]. Water Research, 2018, 140(1): 243-250. doi: 10.1016/j.watres.2018.04.050
|
[23] |
YIN P, CHEN R J, WANG L J, et al. Ambient ozone pollution and daily mortality: A nationwide study in 272 Chinese Cities [J]. Environmental Health Perspectives, 2017, 125(11): 117006. doi: 10.1289/EHP1849
|
[24] |
FINLAYSON-PITTS B J, PITTS J N Jr. Tropospheric air pollution: Ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles [J]. Science, 1997, 276(5315): 1045-1052. doi: 10.1126/science.276.5315.1045
|
[25] |
CARSLAW N. A new detailed chemical model for indoor air pollution [J]. Atmospheric Environment, 2007, 41(6): 1164-1179. doi: 10.1016/j.atmosenv.2006.09.038
|
[26] |
WHITE I R, MARTIN D, MUÑOZ M P, et al. Use of reactive tracers to determine ambient OH radical concentrations: Application within the indoor environment [J]. Environmental Science & Technology, 2010, 44(16): 6269-6274.
|
[27] |
GANDOLFO A, BARTOLOMEI V, GOMEZ ALVAREZ E, et al. The effectiveness of indoor photocatalytic paints on NOx and HONO levels [J]. Applied Catalysis B:Environmental, 2015, 166/167: 84-90. doi: 10.1016/j.apcatb.2014.11.011
|
[28] |
GANDOLFO A, ROUYER L, WORTHAM H, et al. The influence of wall temperature on NO2 removal and HONO levels released by indoor photocatalytic paints [J]. Applied Catalysis B:Environmental, 2017, 209(15): 429-436. doi: 10.1016/j.apcatb.2017.03.021
|
[29] |
LIU J, DWNG H F, LI S, et al. Light-enhanced heterogeneous conversion of NO2 to HONO on solid films consisting of fluorene and fluorene/Na2SO4: an impact on urban and indoor atmosphere [J]. Environmental Science & Technology, 2020, 54(18): 11079-11086.
|
[30] |
GLIGOROVSKI S, WESCHLER C J. The oxidative capacity of indoor atmospheres [J]. Environmental Science & Technology, 2013, 47(24): 13905-13906.
|
[31] |
WESCHLER C J, SHIELDS H C. Production of the hydroxyl radical in indoor air [J]. Environmental Science & Technology, 1996, 30(11): 3250-3258.
|
[32] |
BLAKE R S, MONKS P S, ELLIS A M. Proton-transfer reaction mass spectrometry [J]. Chemical Reviews, 2009, 109(3): 861-896. doi: 10.1021/cr800364q
|
[33] |
WARNEKE C, VERES P, MURPHY S M, et al. PTR-QMS versus PTR-TOF comparison in a region with oil and natural gas extraction industry in the Uintah Basin in 2013 [J]. Atmospheric Measurement Techniques, 2015, 8(1): 411-420. doi: 10.5194/amt-8-411-2015
|
[34] |
BIASIOLI F, GASPERI F, YERETZIAN C, et al. PTR-MS monitoring of VOCs and BVOCs in food science and technology [J]. TrAC Trends in Analytical Chemistry, 2011, 30(7): 968-977. doi: 10.1016/j.trac.2011.03.009
|
[35] |
QIU J, XIE D, LI Y T, et al. Dibasic esters observed as potential emerging indoor air pollutants in new apartments in Beijing, China [J]. Environmental Science & Technology Letters, 2021, 8(6): 445-450.
|
[36] |
LIU Y J, MISZTAL P K, ARATA C, et al. Observing ozone chemistry in an occupied residence [J]. PNAS, 2021, 118(6): e2018140118. doi: 10.1073/pnas.2018140118
|
[37] |
YU Z J, LIU C, NIU H Z, et al. Real time analysis of trace volatile organic compounds in ambient air: A comparison between membrane inlet single photon ionization mass spectrometry and proton transfer reaction mass spectrometry [J]. Analytical Methods:Advancing Methods and Applications, 2020, 12(35): 4343-4350.
|
[38] |
POTERYA V, TKÁČ O, FEDOR J, et al. Mass spectrometry of hydrogen bonded clusters of heterocyclic molecules: Electron ionization vs. photoionization [J]. International Journal of Mass Spectrometry, 2010, 290(2/3): 85-93.
|
[39] |
SHU J N, GAO S K, LI Y. A VUV photoionization aerosol time-of-flight mass spectrometer with a RF-powered VUV lamp for laboratory-based organic aerosol measurements [J]. Aerosol Science and Technology, 2008, 42(2): 110-113. doi: 10.1080/02786820701787977
|
[40] |
YANG Z, ZHANG T C, PAN Y, et al. Electrospray/VUV single-photon ionization mass spectrometry for the analysis of organic compounds [J]. Journal of the American Society for Mass Spectrometry, 2009, 20(3): 430-434. doi: 10.1016/j.jasms.2008.10.026
|
[41] |
VERARDO V, GÓMEZ-CARAVACA A M, MESSIA M C, et al. Development of functional spaghetti enriched in bioactive compounds using barley coarse fraction obtained by air classification [J]. Journal of Agricultural and Food Chemistry, 2011, 59(17): 9127-9134. doi: 10.1021/jf202804v
|
[42] |
TAN G B, GAO W, HUANG Z X, et al. Vacuum ultraviolet single-photon ionization time-of-flight mass spectrometer [J]. Chinese Journal of Analytical Chemistry, 2011, 39(10): 1470-1475. doi: 10.1016/S1872-2040(10)60473-2
|
[43] |
周振, 喻佳俊, 黄正旭, 等. 便携式飞行时间质谱仪用于室内甲苯、二甲苯污染快速溯源分析 [J]. 分析化学, 2015, 43(5): 783-787. doi: 10.11895/j.issn.0253-3820.150101
ZHOU Z, YU J J, HUANG Z X, et al. Source determination for indoor toluene and xylene pollution by portable time-of-light mass spectrometer [J]. Chinese Journal of Analytical Chemistry, 2015, 43(5): 783-787(in Chinese). doi: 10.11895/j.issn.0253-3820.150101
|
[44] |
MARSHALL A G, HENDRICKSON C L. High-resolution mass spectrometers [J]. Annual Review of Analytical Chemistry , 2008, 1: 579-599. doi: 10.1146/annurev.anchem.1.031207.112945
|
[45] |
HERNÁNDEZ F, SANCHO J V, IBÁÑEZ M, et al. Current use of high-resolution mass spectrometry in the environmental sciences [J]. Analytical and Bioanalytical Chemistry, 2012, 403(5): 1251-1264. doi: 10.1007/s00216-012-5844-7
|
[46] |
LI X, HUANG L, ZHU H, et al. Direct human breath analysis by secondary nano-electrospray ionization ultrahigh-resolution mass spectrometry: Importance of high mass resolution and mass accuracy [J]. Rapid Communications in Mass Spectrometry:RCM, 2017, 31(3): 301-308. doi: 10.1002/rcm.7794
|
[47] |
ZENG J F, YU Z J, MEKIC M, et al. Evolution of indoor cooking emissions captured by using secondary electrospray ionization high-resolution mass spectrometry [J]. Environmental Science & Technology Letters, 2020, 7(2): 76-81.
|
[48] |
LIU C, ZENG J F, SINUES P, et al. Quantification of volatile organic compounds by secondary electrospray ionization-high resolution mass spectrometry [J]. Analytica Chimica Acta, 2021, 1180(2): 338876. doi: 10.1016/j.aca.2021.338876
|