[1] |
KHAN M Z, MONDAL P K, SABIR S. Aerobic granulation for wastewater bioremediation: A review[J]. Canadian Journal of Chemical Engineering, 2013, 91(6): 1045-1058. doi: 10.1002/cjce.21729
|
[2] |
郭海娟, 顾一宁, 马放, 等. 好氧颗粒污泥处理市政污水性能与微生物特性研究[J]. 环境科学学报, 2020, 40(10): 3688-3695. doi: 10.13671/j.hjkxxb.2020.0404
|
[3] |
KONG Q, NGO H H, SHU L, et al. Enhancement of aerobic granulation by zero-valent iron in sequencing batch airlift reactor[J]. Journal of Hazardous Materials, 2014, 279(1): 511-517.
|
[4] |
PRONK M, BASSIN J P, DE KREUK M K, et al. Evaluating the main and side effects of high salinity on aerobic granular sludge[J]. Applied Microbiology and Biotechnology, 2014, 98(3): 1339-1348. doi: 10.1007/s00253-013-4912-z
|
[5] |
BENGTSSON S, DE BLOIS M, WILÉN B M, et al. A comparison of aerobic granular sludge with conventional and compact biological treatment technologies[J]. Environmental Technology, 2019, 40(21): 2769-2778. doi: 10.1080/09593330.2018.1452985
|
[6] |
ZHANG Q G, HU J J, LEE D J. Aerobic granular processes: Current research trends[J]. Bioresource Technology, 2016, 210: 74-80. doi: 10.1016/j.biortech.2016.01.098
|
[7] |
苏海佳, 王陆玺, 邓爽, 等. 好氧颗粒污泥技术及研究进展[J]. 化工进展, 2016, 35(6): 1914-1922. doi: 10.16085/j.issn.1000-6613.2016.06.033
|
[8] |
LEE D J, CHEN Y Y, SHOE K Y, et al. Advances in aerobic granule formation and granule stability in the course of storage and reactor operation[J]. Biotechnology Advances, 2010, 28(6): 919-934. doi: 10.1016/j.biotechadv.2010.08.007
|
[9] |
SARMA S J, TAY J H, CHU A. Finding knowledge gaps in aerobic granulation technology[J]. Trends in Biotechnology, 2017, 35(1): 66-78. doi: 10.1016/j.tibtech.2016.07.003
|
[10] |
CORSINO S F, DI TRAPANI D, TORREGROSSA M, et al. Aerobic granular sludge treating high strength Citrus wastewater: analysis of pH and organic loading rate effect on kinetics, performance and stability[J]. Journal of Environmental Management, 2018, 214(1): 23-35.
|
[11] |
GAO D W, Yuan X J, Liang H. Reactivation performance of aerobic granules under different storage strategies[J]. Water Research, 2012, 46(10): 3315-3322. doi: 10.1016/j.watres.2012.03.045
|
[12] |
ADAV S S, LEE D J, LAI J Y. Proteolytic activity in stored aerobic granular sludge and structural integrity[J]. Bioresource Technology, 2009, 100(1): 68-73. doi: 10.1016/j.biortech.2008.05.045
|
[13] |
HU J J, ZHANG Q G, CHEN Y Y. et al. Drying and recovery of aerobic granules[J]. Bioresource Technology, 2016, 218: 397-401. doi: 10.1016/j.biortech.2016.06.121
|
[14] |
LV Y, WAN C L, LIU X, et al. Drying and re-cultivation of aerobic granules[J]. Bioresource Technology, 2013, 129(2): 700-703.
|
[15] |
赵欣欣, 孙玲, 董玉玮, 等. 固定化微生物技术及其在污水处理中的应用[J]. 水处理技术, 2015, 41(7): 17-20.
|
[16] |
赵珏, 宣鑫鹏, 程媛媛, 等. 琼脂包埋好氧颗粒污泥的储存及恢复[J]. 中国给水排水, 2018, 34(3): 23-29.
|
[17] |
李黔花, 李志华, 岳秀, 等. 好氧颗粒污泥处理印染废水的效能及其微生物特征[J]. 工业水处理, 2020, 40(3): 43-48. doi: 10.11894/iwt.2019-0056
|
[18] |
国家环境保护总局. 水和废水监测分析方法(第4版)[M]. 北京: 中国环境科学出版社, 2002.
|
[19] |
刘前进. 好氧颗粒污泥培养及其在苯酚溶液中储存稳定性研究[D]. 广东工业大学, 2021.
|
[20] |
王硕. 低温好氧颗粒污泥形成过程及其特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
|
[21] |
张云霞, 季民, 李超, 等. 好氧颗粒污泥胞外聚合物(EPS)的生化性研究[J]. 环境科学, 2008, 29(11): 3124-3127. doi: 10.3321/j.issn:0250-3301.2008.11.023
|
[22] |
DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugar and related substances[J]. Analytical Chemistry, 1956, 28(5): 250-256.
|
[23] |
WALKER J M. The bicinchoninic acid (BCA) assay for protein quantitation[J]. Methods in Molecular Biology, 1994, 32: 5-8.
|
[24] |
关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986.
|
[25] |
XU H C, HE P J, WANG G Z, et al. Enhanced storage stability of aerobic granules seeded with pellets[J]. Bioresource Technology, 2010, 101(21): 8031-8037. doi: 10.1016/j.biortech.2010.05.062
|
[26] |
WAN C, ZHANG Q, LEE D J, et al. Long-term storage of aerobic granules in liquid media: Viable but non-culturable status[J]. Bioresource Technology, 2014, 166(8): 464-470.
|
[27] |
陈垚, 张志敏, 袁绍春, 等. 高盐好氧颗粒污泥低温储存后活性恢复研究[J]. 中国给水排水, 2015, 31(5): 22-25.
|
[28] |
ZHANG L L, ZHANG B, HUANG Y F, et al. Re-activation characteristics of preserved aerobic granular sludge[J]. Journal of Environmental Sciences, 2005, 17(4): 655-658.
|
[29] |
DURMAZ B, SANIN F D. Effect of carbon to nitrogen ratio on the composition of microbial extracellular polymers in activated sludge[J]. Water Science & Technology, 2001, 44(10): 221-229.
|
[30] |
HE Q, ZHANG W, ZHANG S, et al. Performance and microbial population dynamics during stable operation and reactivation after extended idle conditions in an aerobic granular sequencing batch reactor[J]. Bioresource Technology, 2017, 238: 116-121. doi: 10.1016/j.biortech.2017.03.181
|
[31] |
WLODARCZYK T, STEPNIEWSKI W, BRZEZINSKA M. Dehydrogenase activity, redox potential, and emissions of carbon dioxide and nitrous oxide from cambisols under flooding conditions[J]. Biology & Fertility of Soils, 2002, 36(3): 200-206.
|
[32] |
李静, 严红, 肖本益. 活性污泥活性的表征及其检测方法研究[J]. 工业水处理, 2016, 36(8): 5-10. doi: 10.11894/1005-829x.2016.36(8).005
|
[33] |
ZHANG Y, ZHAO X H. The effects of powdered activated carbon or ferric chloride on sludge characteristics and microorganisms in a membrane bioreactor[J]. Desalination and Water Treatment, 2014, 52(37/38/39): 6868-6877.
|
[34] |
刘前进, 刘立凡. 混合碳源的好氧颗粒污泥培养及其除污效果分析[J]. 环境工程学报, 2021, 15(03): 962-971. doi: 10.12030/j.cjee.202006106
|
[35] |
王佳伟, 高永青, 孙丽欣, 等. 中试SBR内好氧颗粒污泥培养和微生物群落变化[J]. 中国给水排水, 2019, 35(7): 1-7. doi: 10.19853/j.zgjsps.1000-4602.2019.07.001
|
[36] |
冷璐, 信欣, 鲁航, 等. 同步硝化反硝化耦合除磷工艺的快速启动及其运行特征[J]. 环境科学, 2015, 36(11): 4180-4188.
|