[1] ZHANG S, ZHANG J, WANG W, et al. Removal of phosphate from landscape water using an electrocoagulation process powered directly by photovoltaic solar modules[J]. Solar Energy Materials and Solar Cells, 2013, 117: 73-80. doi: 10.1016/j.solmat.2013.05.027
[2] WANG Y, WANG W H, YAN F L, et al. Effects and mechanisms of calcium peroxide on purification of severely eutrophic water[J]. Science of the Total Environment, 2019, 650: 2796-2806. doi: 10.1016/j.scitotenv.2018.10.040
[3] WANG W H, WANG Y, FAN P, et al. Effect of calcium peroxide on the water quality and bacterium community of sediment in black-odor water[J]. Environmental Pollution, 2019, 248: 18-27. doi: 10.1016/j.envpol.2018.11.069
[4] 陈毛华. 生态浮床原位修复景观水体的效果研究[J]. 安全与环境学报, 2022, 22(2): 1075-1083.
[5] 孔令为, 张义, 汪璐, 等. 新型生物滤床-人工湿地耦合系统强化处理生活污水研究[J]. 水处理技术, 2018, 44(7): 110-114. doi: 10.16796/j.cnki.1000-3770.2018.07.024
[6] WANG W H, WANG Y, SUN L Q, et al. Research and application status of ecological floating bed in eutrophic landscape water restoration[J]. Science of the Total Environment, 2020, 704: 135434. doi: 10.1016/j.scitotenv.2019.135434
[7] ZHOU S, LIU M, CHEN B, et al. Microbubble- and nanobubble-aeration for upgrading conventional activated sludge process: A review[J]. Bioresource Technology, 2022, 362: 127826. doi: 10.1016/j.biortech.2022.127826
[8] XIAO W, XU G. Mass transfer of nanobubble aeration and its effect on biofilm growth: Microbial activity and structural properties[J]. Science of the Total Environment, 2020, 703: 134976. doi: 10.1016/j.scitotenv.2019.134976
[9] XING X, DING S, LIU L, et al. Direct evidence for the enhanced acquisition of phosphorus in the rhizosphere of aquatic plants: A case study on Vallisneria natans[J]. Science of the Total Environment, 2018, 616: 386-396.
[10] ETCHEPARE R, AZEVEDO A, CALGAROTO S, et al. Removal of ferric hydroxide by flotation with micro and nanobubbles[J]. Separation and Purification Technology, 2017, 184: 347-353. doi: 10.1016/j.seppur.2017.05.014
[11] HU L M, XIA Z R. Application of ozone micro-nano-bubbles to groundwater remediation[J]. Journal of Hazardous Materials, 2018, 342: 446-453. doi: 10.1016/j.jhazmat.2017.08.030
[12] XIA Z R, HU L M. Treatment of organics contaminated wastewater by ozone micro-nano-bubbles[J]. Water, 2019, 11(1): 55.
[13] CHEN B, ZHOU S N, ZHANG N, et al. Micro and nano bubbles promoted biofilm formation with strengthen of COD and TN removal synchronously in a blackened and odorous water[J]. Science of the Total Environment, 2022, 837: 155578. doi: 10.1016/j.scitotenv.2022.155578
[14] ZHENG L L, JIANG C L, CHEN X, et al. Combining hydrochemistry and hydrogen and oxygen stable isotopes to reveal the influence of human activities on surface water quality in Chaohu Lake Basin[J]. Journal of Environmental Management, 2022, 312: 114933. doi: 10.1016/j.jenvman.2022.114933
[15] LIU M, RAN Y, PENG X, et al. Sustainable modulation of anaerobic malodorous black water: The interactive effect of oxygen-loaded porous material and submerged macrophyte[J]. Water Research, 2019, 160: 70-80. doi: 10.1016/j.watres.2019.05.045
[16] SHAHABALDIN R, HESAM K, PARVEEN FATEMEH R, et al. Recent advances on the removal of phosphorus in aquatic plant-based systems[J]. Environmental Technology & Innovation, 2021, 24: 101933.
[17] BAI M, LIU Z, LIU Z, et al. Removal efficiency of organic contaminants in landfill leachate contaminated groundwater under oxygen micro-nano bubble aeration[J]. Environmental Science:Water Research & Technology, 2022, 8(9): 1836-1844.
[18] YANG N, ZHANG C, WANG L, et al. Nitrogen cycling processes and the role of multi-trophic microbiota in dam-induced river-reservoir systems[J]. Water Research, 2021, 206: 117730. doi: 10.1016/j.watres.2021.117730
[19] SONG G, HOU W, WANG Q, et al. Effect of low temperature on eutrophicated waterbody restoration by Spirodela polyrhiza[J]. Bioresource Technology, 2006, 97(15): 1865-1869. doi: 10.1016/j.biortech.2005.08.012
[20] PARSONS C T, REZANEZHAD F, O'CONNELL D W, et al. Sediment phosphorus speciation and mobility under dynamic redox conditions[J]. Biogeosciences, 2017, 14(14): 3585-3602. doi: 10.5194/bg-14-3585-2017
[21] SUN Y, WANG S, NIU J. Microbial community evolution of black and stinking rivers during in situ remediation through micro-nano bubble and submerged resin floating bed technology[J]. Bioresource Technology, 2018, 258: 187-194. doi: 10.1016/j.biortech.2018.03.008
[22] SHI X, NG K K, LI X R, et al. Investigation of intertidal wetland sediment as a novel inoculation source for anaerobic saline wastewater treatment[J]. Environmental Science & Technology, 2015, 49(10): 6231-6239.
[23] NG K K, SHI X, ONG S L, et al. Pyrosequencing reveals microbial community profile in anaerobic bio-entrapped membrane reactor for pharmaceutical wastewater treatment[J]. Bioresource Technology, 2016, 200: 1076-1079. doi: 10.1016/j.biortech.2015.10.100
[24] RODRIGUEZ J, GALLAMPOIS C M J, TIMONEN S, et al. Effects of organic pollutants on bacterial communities under future climate change Scenarios[J]. Frontiers in Microbiology, 2018, 9: 2926. doi: 10.3389/fmicb.2018.02926
[25] QIN H, JI B, ZHANG S F, et al. Study on the bacterial and archaeal community structure and diversity of activated sludge from three wastewater treatment plants[J]. Marine Pollution Bulletin, 2018, 135: 801-807. doi: 10.1016/j.marpolbul.2018.08.010
[26] 许晓毅, 尤晓露, 吕晨培, 等. 包埋固定化活性污泥脱氮特性与微生物群落分析[J]. 环境科学, 2017, 38(5): 2052-2058. doi: 10.13227/j.hjkx.201611016
[27] 唐涛涛, 李江, 杨爱江, 等. 秸秆类型及配比变化对污泥厌氧消化中微生物群落的影响[J]. 化工进展, 2020, 39(2): 667-678. doi: 10.16085/j.issn.1000-6613.2019-0777