[1] |
TOURINHO P S, van GESTEL C A M, LOFTS S, et al. Metal-based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates [J]. Environmental Toxicology and Chemistry, 2012, 31(8): 1679-1692. doi: 10.1002/etc.1880
|
[2] |
SENGUL A B, ASMATULU E. Toxicity of metal and metal oxide nanoparticles: A review [J]. Environmental Chemistry Letters, 2020, 18(5): 1659-1683. doi: 10.1007/s10311-020-01033-6
|
[3] |
AUFFAN M, ROSE J, WIESNER M R, et al. Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro [J]. Environmental Pollution, 2009, 157(4): 1127-1133. doi: 10.1016/j.envpol.2008.10.002
|
[4] |
VENKATESH N. Metallic nanoparticle: A review [J]. Biomedical Journal of Scientific & Technical Research, 2018, 4(2): 3765-3775.
|
[5] |
KLAINE S J, ALVAREZ P J J, BATLEY G E, et al. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects [J]. Environmental Toxicology and Chemistry, 2008, 27(9): 1825-1851. doi: 10.1897/08-090.1
|
[6] |
YANG Q Q, WEI X L, FANG Y P, et al. Nanochemoprevention with therapeutic benefits: An updated review focused on epigallocatechin gallate delivery [J]. Critical Reviews in Food Science and Nutrition, 2020, 60(8): 1243-1264. doi: 10.1080/10408398.2019.1565490
|
[7] |
KLOEPFER J A, MIELKE R E and NADEAU, J L. Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms [J]. Applied and Environmental Microbiology, 2005, 71(5): 2548-2557. doi: 10.1128/AEM.71.5.2548-2557.2005
|
[8] |
SCHNEIDER S L, LIM H W. A review of inorganic UV filters zinc oxide and titanium dioxide [J]. Photodermatology, Photoimmunology & Photomedicine, 2019, 35(6): 442-446.
|
[9] |
HUANG B, YAN S, XIAO L, et al. Label-free imaging of nanoparticle uptake competition in single cells by hyperspectral stimulated Raman scattering [J]. Small (Weinheim an Der Bergstrasse, Germany), 2018, 14(10).
|
[10] |
LIU Y Y, GUO W B, ZHAO Y T, et al. Algal foods reduce the uptake of hematite nanoparticles by downregulating water filtration in Daphnia magna [J]. Environmental Science & Technology, 2019, 53(13): 7803-7811.
|
[11] |
WANG Y H, RAJALA A, RAJALA R V S. Nanoparticles as delivery vehicles for the treatment of retinal degenerative diseases [J]. Advances in Experimental Medicine and Biology, 2018, 1074: 117-123.
|
[12] |
E J, ZHANG Z Q, CHEN J W, et al. Performance and emission evaluation of a marine diesel engine fueled by water biodiesel-diesel emulsion blends with a fuel additive of a cerium oxide nanoparticle [J]. Energy Conversion and Management, 2018, 169: 194-205. doi: 10.1016/j.enconman.2018.05.073
|
[13] |
PARK J, KWON T, KIM J, et al. Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions [J]. Chemical Society Reviews, 2018, 47(22): 8173-8202. doi: 10.1039/C8CS00336J
|
[14] |
ZLOTEA C, LATROCHE M. Role of nanoconfinement on hydrogen sorption properties of metal nanoparticles hybrids [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 439: 117-130.
|
[15] |
TAO A R, HABAS S, YANG P D. Shape control of colloidal metal nanocrystals [J]. Small, 2008, 4(3): 310-325. doi: 10.1002/smll.200701295
|
[16] |
CHEN M, WU B H, YANG J, et al. Small adsorbate-assisted shape control of Pd and Pt nanocrystals [J]. Advanced Materials (Deerfield Beach, Fla. ), 2012, 24(7): 862-879. doi: 10.1002/adma.201104145
|
[17] |
NOWACK B, BUCHELI T D. Occurrence, behavior and effects of nanoparticles in the environment [J]. Environmental Pollution, 2007, 150(1): 5-22. doi: 10.1016/j.envpol.2007.06.006
|
[18] |
DAUGHTON C G. Non-regulated water contaminants: Emerging research [J]. Environmental Impact Assessment Review, 2004, 24(7/8): 711-732.
|
[19] |
MOORE M N. Biocomplexity: The post-genome challenge in ecotoxicology [J]. Aquatic Toxicology, 2002, 59(1/2): 1-15.
|
[20] |
MOORE M N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? [J]. Environment International, 2006, 32(8): 967-976. doi: 10.1016/j.envint.2006.06.014
|
[21] |
PENG C, ZHANG W, GAO H P, et al. Behavior and potential impacts of metal-based engineered nanoparticles in aquatic environments [J]. Nanomaterials (Basel, Switzerland), 2017, 7(1): 21. doi: 10.3390/nano7010021
|
[22] |
LEAD J R, BATLEY G E, ALVAREZ P J J, et al. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects-An updated review [J]. Environmental Toxicology and Chemistry, 2018, 37(8): 2029-2063. doi: 10.1002/etc.4147
|
[23] |
CHRISTIAN P, von der KAMMER F, BAALOUSHA M, et al. Nanoparticles: structure, properties, preparation and behaviour in environmental media [J]. Ecotoxicology (London, England), 2008, 17(5): 326-343. doi: 10.1007/s10646-008-0213-1
|
[24] |
ZHANG C Q, HU Z Q, DENG B L. Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms [J]. Water Research, 2016, 88: 403-427. doi: 10.1016/j.watres.2015.10.025
|
[25] |
FABREGA J, LUOMA S N, TYLER C R, et al. Silver nanoparticles: Behaviour and effects in the aquatic environment [J]. Environment International, 2011, 37(2): 517-531. doi: 10.1016/j.envint.2010.10.012
|
[26] |
THWALA M, KLAINE S J, MUSEE N. Interactions of metal-based engineered nanoparticles with aquatic higher plants: A review of the state of current knowledge [J]. Environmental Toxicology and Chemistry, 2016, 35(7): 1677-1694. doi: 10.1002/etc.3364
|
[27] |
NAM D H, LEE B C, EOM I C, et al. Uptake and bioaccumulation of titanium- and silver-nanoparticles in aquatic ecosystems [J]. Molecular & Cellular Toxicology, 2014, 10(1): 9-17.
|
[28] |
LUOMA S N, KHAN F R, CROTEAU M N. Bioavailability and bioaccumulation of metal-based engineered nanomaterials in aquatic environments[M]. Nanoscience and the Environment. Amsterdam: Elsevier, 2014: 157-193.
|
[29] |
ROCHA T L, GOMES T, SOUSA V S, et al. Ecotoxicological impact of engineered nanomaterials in bivalve molluscs: An overview [J]. Marine Environmental Research, 2015, 111: 74-88. doi: 10.1016/j.marenvres.2015.06.013
|
[30] |
SCOWN T M, van AERLE R, TYLER C R. Review: Do engineered nanoparticles pose a significant threat to the aquatic environment? [J]. Critical Reviews in Toxicology, 2010, 40(7): 653-670. doi: 10.3109/10408444.2010.494174
|
[31] |
CHEN X J, ZHU Y, YANG K, et al. Nanoparticle TiO2 size and rutile content impact bioconcentration and biomagnification from algae to Daphnia [J]. Environmental Pollution, 2019, 247: 421-430. doi: 10.1016/j.envpol.2019.01.022
|
[32] |
ZHU R R, WANG S L, CHAO J, et al. Bio-effects of Nano-TiO2 on DNA and cellular ultrastructure with different polymorph and size [J]. Materials Science and Engineering:C, 2009, 29(3): 691-696. doi: 10.1016/j.msec.2008.12.023
|
[33] |
CHEN F R, XIAO Z G, YUE L, et al. Algae response to engineered nanoparticles: Current understanding, mechanisms and implications [J]. Environmental Science:Nano, 2019, 6(4): 1026-1042. doi: 10.1039/C8EN01368C
|
[34] |
TANGAA S R, SELCK H, WINTHER-NIELSEN M, et al. Trophic transfer of metal-based nanoparticles in aquatic environments: A review and recommendations for future research focus [J]. Environmental Science:Nano, 2016, 3(5): 966-981. doi: 10.1039/C5EN00280J
|
[35] |
EL BADAWY A M, LUXTON T P, SILVA R G, et al. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions [J]. Environmental Science & Technology, 2010, 44(4): 1260-1266.
|
[36] |
HERMANSSON M. The DLVO theory in microbial adhesion [J]. Colloids and Surfaces B:Biointerfaces, 1999, 14(1/2/3/4): 105-119.
|
[37] |
HANDY R D, von der KAMMER F, LEAD J R, et al. The ecotoxicology and chemistry of manufactured nanoparticles [J]. Ecotoxicology (London, England), 2008, 17(4): 287-314. doi: 10.1007/s10646-008-0199-8
|
[38] |
WAYCHUNAS G A, KIM C S, BANFIELD J F. Nanoparticulate iron oxide minerals in soils and sediments: Unique properties and contaminant scavenging mechanisms [J]. Journal of Nanoparticle Research, 2005, 7(4/5): 409-433.
|
[39] |
HOTZE E M, PHENRAT T, LOWRY G V. Nanoparticle aggregation: Challenges to understanding transport and reactivity in the environment [J]. Journal of Environmental Quality, 2010, 39(6): 1909-1924. doi: 10.2134/jeq2009.0462
|
[40] |
FRENCH R A, JACOBSON A R, KIM B, et al. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles [J]. Environmental Science & Technology, 2009, 43(5): 1354-1359.
|
[41] |
LEBRETTE S, PAGNOUX C, ABÉLARD P. Stability of aqueous TiO2 suspensions: Influence of ethanol [J]. Journal of Colloid and Interface Science, 2004, 280(2): 400-408. doi: 10.1016/j.jcis.2004.07.033
|
[42] |
BUETTNER K M, RINCIOG C I, MYLON S E. Aggregation kinetics of cerium oxide nanoparticles in monovalent and divalent electrolytes [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2010, 366(1/2/3): 74-79.
|
[43] |
ZHOU D X, JI Z X, JIANG X M, et al. Influence of material properties on TiO2 nanoparticle agglomeration [J]. PLoS One, 2013, 8(11): e81239. doi: 10.1371/journal.pone.0081239
|
[44] |
JIANG J K, OBERDÖRSTER G, BISWAS P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies [J]. Journal of Nanoparticle Research, 2009, 11(1): 77-89. doi: 10.1007/s11051-008-9446-4
|
[45] |
FERNANDO I, ZHOU Y. Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles [J]. Chemosphere, 2019, 216: 297-305. doi: 10.1016/j.chemosphere.2018.10.122
|
[46] |
WANG X G, SUN T S, ZHU H, et al. Roles of pH, cation valence, and ionic strength in the stability and aggregation behavior of zinc oxide nanoparticles [J]. Journal of Environmental Management, 2020, 267: 110656. doi: 10.1016/j.jenvman.2020.110656
|
[47] |
MORELLI E, GABELLIERI E, BONOMINI A, et al. TiO2 nanoparticles in seawater: Aggregation and interactions with the green alga Dunaliella tertiolecta [J]. Ecotoxicology and Environmental Safety, 2018, 148: 184-193. doi: 10.1016/j.ecoenv.2017.10.024
|
[48] |
FILELLA M. Freshwaters: which NOM matters? [J]. Environmental Chemistry Letters, 2009, 7(1): 21-35. doi: 10.1007/s10311-008-0158-x
|
[49] |
ZHAO J, WANG Z Y, GHOSH S, et al. Phenanthrene binding by humic acid-protein complexes as studied by passive dosing technique [J]. Environmental Pollution, 2014, 184: 145-153. doi: 10.1016/j.envpol.2013.08.028
|
[50] |
ERHAYEM M, SOHN M. Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter [J]. Science of the Total Environment, 2014, 468/469: 249-257. doi: 10.1016/j.scitotenv.2013.08.038
|
[51] |
LOUIE S M, TILTON R D, LOWRY G V. Effects of molecular weight distribution and chemical properties of natural organic matter on gold nanoparticle aggregation [J]. Environmental Science & Technology, 2013, 47(9): 4245-4254.
|
[52] |
ZHANG Y, CHEN Y S, WESTERHOFF P, et al. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles [J]. Water Research, 2009, 43(17): 4249-4257. doi: 10.1016/j.watres.2009.06.005
|
[53] |
BIAN S W, MUDUNKOTUWA I A, RUPASINGHE T, et al. Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: Influence of pH, ionic strength, size, and adsorption of humic acid [J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2011, 27(10): 6059-6068. doi: 10.1021/la200570n
|
[54] |
ZHOU D X, KELLER A A. Role of morphology in the aggregation kinetics of ZnO nanoparticles [J]. Water Research, 2010, 44(9): 2948-2956. doi: 10.1016/j.watres.2010.02.025
|
[55] |
LIN D, STORY S D, WALKER S L, et al. Influence of extracellular polymeric substances on the aggregation kinetics of TiO2 nanoparticles [J]. Water Research, 2016, 104: 381-388. doi: 10.1016/j.watres.2016.08.044
|
[56] |
SHENG A X, LIU F, XIE N, et al. Impact of proteins on aggregation kinetics and adsorption ability of hematite nanoparticles in aqueous dispersions [J]. Environmental Science & Technology, 2016, 50(5): 2228-2235.
|
[57] |
AFSHINNIA K, GIBSON I, MERRIFIELD R, et al. The concentration-dependent aggregation of Ag NPs induced by cystine [J]. Science of the Total Environment, 2016, 557/558: 395-403. doi: 10.1016/j.scitotenv.2016.02.212
|
[58] |
GARCÍA-GARCÍA S, WOLD S, JONSSON M. Effects of temperature on the stability of colloidal montmorillonite particles at different pH and ionic strength [J]. Applied Clay Science, 2009, 43(1): 21-26. doi: 10.1016/j.clay.2008.07.011
|
[59] |
ZOU X Y, LI P H, LOU J, et al. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen [J]. Environmental Pollution, 2017, 230: 674-682. doi: 10.1016/j.envpol.2017.07.007
|
[60] |
SOHAL I S, O'FALLON K S, GAINES P, et al. Ingested engineered nanomaterials: State of science in nanotoxicity testing and future research needs [J]. Particle and Fibre Toxicology, 2018, 15(1): 29. doi: 10.1186/s12989-018-0265-1
|
[61] |
MIAO A J, SCHWEHR K A, XU C, et al. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances [J]. Environmental Pollution, 2009, 157(11): 3034-3041. doi: 10.1016/j.envpol.2009.05.047
|
[62] |
MIAO A J, LUO Z P, CHEN C S, et al. Intracellular uptake: A possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica [J]. PLoS One, 2010, 5(12): e15196. doi: 10.1371/journal.pone.0015196
|
[63] |
ZHANG W C, XIAO B D, FANG T. Chemical transformation of silver nanoparticles in aquatic environments: Mechanism, morphology and toxicity [J]. Chemosphere, 2018, 191: 324-334. doi: 10.1016/j.chemosphere.2017.10.016
|
[64] |
MORTIMER M, KASEMETS K, KAHRU A. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila [J]. Toxicology, 2010, 269(2/3): 182-189.
|
[65] |
IVASK A, JUGANSON K, BONDARENKO O, et al. Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: A comparative review [J]. Nanotoxicology, 2014, 8(sup1): 57-71. doi: 10.3109/17435390.2013.855831
|
[66] |
MCCRACKEN C, ZANE A, KNIGHT D A, et al. Minimal intestinal epithelial cell toxicity in response to short- and long-term food-relevant inorganic nanoparticle exposure [J]. Chemical Research in Toxicology, 2013, 26(10): 1514-1525. doi: 10.1021/tx400231u
|
[67] |
de ANGELIS I, BARONE F, ZIJNO A, et al. Comparative study of ZnO and TiO2 nanoparticles: Physicochemical characterisation and toxicological effects on human colon carcinoma cells [J]. Nanotoxicology, 2013, 7(8): 1361-1372. doi: 10.3109/17435390.2012.741724
|
[68] |
MILLER R J, LENIHAN H S, MULLER E B, et al. Impacts of metal oxide nanoparticles on marine phytoplankton [J]. Environmental Science & Technology, 2010, 44(19): 7329-7334.
|
[69] |
ZHANG W Y, QIAN L B, da OUYANG, et al. Effective removal of Cr(VI) by attapulgite-supported nanoscale zero-valent iron from aqueous solution: Enhanced adsorption and crystallization [J]. Chemosphere, 2019, 221: 683-692. doi: 10.1016/j.chemosphere.2019.01.070
|
[70] |
PERETYAZHKO T S, ZHANG Q B, COLVIN V L. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: Kinetics and size changes [J]. Environmental Science & Technology, 2014, 48(20): 11954-11961.
|
[71] |
TANG R, ORME C A, NANCOLLAS G H. Dissolution of crystallites: Surface energetic control and size effects [J]. Chemphyschem, 2004, 5(5): 688-696. doi: 10.1002/cphc.200300956
|
[72] |
BORM P, KLAESSIG F C, LANDRY T D, et al. Research strategies for safety evaluation of nanomaterials, part V: Role of dissolution in biological fate and effects of nanoscale particles [J]. Toxicological Sciences, 2006, 90(1): 23-32. doi: 10.1093/toxsci/kfj084
|
[73] |
KITTLER S, GREULICH C, DIENDORF J, et al. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions [J]. Chemistry of Materials, 2010, 22(16): 4548-4554. doi: 10.1021/cm100023p
|
[74] |
WANG Z Y, ZHANG L, ZHAO J, et al. Environmental processes and toxicity of metallic nanoparticles in aquatic systems as affected by natural organic matter [J]. Environmental Science:Nano, 2016, 3(2): 240-255. doi: 10.1039/C5EN00230C
|
[75] |
ZHANG L Q, LI J Y, YANG K, et al. Physicochemical transformation and algal toxicity of engineered nanoparticles in surface water samples [J]. Environmental Pollution, 2016, 211: 132-140. doi: 10.1016/j.envpol.2015.12.041
|
[76] |
ODZAK N, KISTLER D, SIGG L. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments [J]. Environmental Pollution, 2017, 226: 1-11. doi: 10.1016/j.envpol.2017.04.006
|
[77] |
SOTIRIOU G A, MEYER A, KNIJNENBURG J T N, et al. Quantifying the origin of released Ag+ ions from nanosilver [J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2012, 28(45): 15929-15936. doi: 10.1021/la303370d
|
[78] |
LIU J Y, HURT R H. Ion release kinetics and particle persistence in aqueous nano-silver colloids [J]. Environmental Science & Technology, 2010, 44(6): 2169-2175.
|
[79] |
ARUOJA V, DUBOURGUIER H C, KASEMETS K, et al. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata [J]. Science of the Total Environment, 2009, 407(4): 1461-1468. doi: 10.1016/j.scitotenv.2008.10.053
|
[80] |
FRANKLIN N M, ROGERS N J, APTE S C, et al. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility [J]. Environmental Science & Technology, 2007, 41(24): 8484-8490.
|
[81] |
PENG X H, PALMA S, FISHER N S, et al. Effect of morphology of ZnO nanostructures on their toxicity to marine algae [J]. Aquatic Toxicology, 2011, 102(3/4): 186-196.
|
[82] |
XIU Z M, ZHANG Q B, PUPPALA H L, et al. Negligible particle-specific antibacterial activity of silver nanoparticles [J]. Nano Letters, 2012, 12(8): 4271-4275. doi: 10.1021/nl301934w
|
[83] |
NAVARRO E, PICCAPIETRA F, WAGNER B, et al. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii [J]. Environmental Science & Technology, 2008, 42(23): 8959-8964.
|
[84] |
WANG Z, CHEN J W, LI X H, et al. Aquatic toxicity of nanosilver colloids to different trophic organisms: Contributions of particles and free silver ion [J]. Environmental Toxicology and Chemistry, 2012, 31(10): 2408-2413. doi: 10.1002/etc.1964
|
[85] |
KAEGI R, VOEGELIN A, ORT C, et al. Fate and transformation of silver nanoparticles in urban wastewater systems [J]. Water Research, 2013, 47(12): 3866-3877. doi: 10.1016/j.watres.2012.11.060
|
[86] |
KIM B, PARK C S, MURAYAMA M, et al. Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products [J]. Environmental Science & Technology, 2010, 44(19): 7509-7514.
|
[87] |
LIU J Y, PENNELL K G, HURT R H. Kinetics and mechanisms of nanosilver oxysulfidation [J]. Environmental Science & Technology, 2011, 45(17): 7345-7353.
|
[88] |
MA R, LEVARD C, MICHEL F M, et al. Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility [J]. Environmental Science & Technology, 2013, 47(6): 2527-2534.
|
[89] |
MA R, STEGEMEIER J, LEVARD C, et al. Sulfidation of copper oxide nanoparticles and properties of resulting copper sulfide [J]. Environ Sci:Nano, 2014, 1(4): 347-357. doi: 10.1039/C4EN00018H
|
[90] |
DONGARGAONKAR A A, CLOGSTON J D. Quantitation of surface coating on nanoparticles using thermogravimetric analysis [J]. Methods in Molecular Biology , 2018, 1682: 57-63.
|
[91] |
CARTWRIGHT A, JACKSON K, MORGAN C, et al. A review of metal and metal-oxide nanoparticle coating technologies to inhibit agglomeration and increase bioactivity for agricultural applications [J]. Agronomy, 2020, 10(7): 1018. doi: 10.3390/agronomy10071018
|
[92] |
HUA M Y, YANG H W, CHUANG C K, et al. Magnetic-nanoparticle-modified paclitaxel for targeted therapy for prostate cancer [J]. Biomaterials, 2010, 31(28): 7355-7363. doi: 10.1016/j.biomaterials.2010.05.061
|
[93] |
VIGDERMAN L, ZUBAREV E R. Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules [J]. Advanced Drug Delivery Reviews, 2013, 65(5): 663-676. doi: 10.1016/j.addr.2012.05.004
|
[94] |
SHARMA A, GOYAL A K, RATH G. Recent advances in metal nanoparticles in cancer therapy [J]. Journal of Drug Targeting, 2018, 26(8): 617-632. doi: 10.1080/1061186X.2017.1400553
|
[95] |
KENNEDY L C, BICKFORD L R, LEWINSKI N A, et al. A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies [J]. Small (Weinheim an Der Bergstrasse, Germany), 2011, 7(2): 169-183. doi: 10.1002/smll.201000134
|
[96] |
LOUIE S M, GORHAM J M, MCGIVNEY E A, et al. Photochemical transformations of thiolated polyethylene glycol coatings on gold nanoparticles [J]. Environmental Science:Nano, 2016, 3(5): 1090-1102. doi: 10.1039/C6EN00141F
|
[97] |
LOUIE S M, GORHAM J M, TAN J J, et al. Ultraviolet photo-oxidation of polyvinylpyrrolidone (PVP) coatings on gold nanoparticles[J]. Environmental Science. Nano, 2017, 4(9): 1866-1875.
|
[98] |
RODEA-PALOMARES I, BOLTES K, FERNÁNDEZ-PIÑAS F, et al. Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms [J]. Toxicological Sciences, 2010, 119(1): 135-145.
|
[99] |
BONDARENKO O, JUGANSON K, IVASK A, et al. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review [J]. Archives of Toxicology, 2013, 87(7): 1181-1200. doi: 10.1007/s00204-013-1079-4
|
[100] |
KÖSER J, ENGELKE M, HOPPE M, et al. Predictability of silver nanoparticle speciation and toxicity in ecotoxicological media [J]. Environmental Science:Nano, 2017, 4(7): 1470-1483. doi: 10.1039/C7EN00026J
|
[101] |
LEI C, ZHANG L Q, YANG K, et al. Toxicity of iron-based nanoparticles to green algae: Effects of particle size, crystal phase, oxidation state and environmental aging [J]. Environmental Pollution, 2016, 218: 505-512. doi: 10.1016/j.envpol.2016.07.030
|
[102] |
LU T, ZHANG Q, ZHANG Z Y, et al. Pollutant toxicology with respect to microalgae and cyanobacteria [J]. Journal of Environmental Sciences, 2021, 99: 175-186. doi: 10.1016/j.jes.2020.06.033
|
[103] |
HUANG J, CHENG J P, YI J. Impact of silver nanoparticles on marine diatom Skeletonema costatum [J]. Journal of Applied Toxicology:JAT, 2016, 36(10): 1343-1354. doi: 10.1002/jat.3325
|
[104] |
JIA K, SUN C L, WANG Y L, et al. Effect of TiO2 nanoparticles and multiwall carbon nanotubes on the freshwater diatom Nitzschia frustulum: Evaluation of growth, cellular components and morphology [J]. Chemistry and Ecology, 2019, 35(1): 69-85. doi: 10.1080/02757540.2018.1528240
|
[105] |
DENG X Y, CHENG J, HU X L, et al. Biological effects of TiO2 and CeO2 nanoparticles on the growth, photosynthetic activity, and cellular components of a marine diatom Phaeodactylum tricornutum [J]. Science of the Total Environment, 2017, 575: 87-96. doi: 10.1016/j.scitotenv.2016.10.003
|
[106] |
DEDMAN C J, NEWSON G C, DAVIES G L, et al. Mechanisms of silver nanoparticle toxicity on the marine cyanobacterium Prochlorococcus under environmentally-relevant conditions [J]. Science of the Total Environment, 2020, 747: 141229. doi: 10.1016/j.scitotenv.2020.141229
|
[107] |
BRAYNER R, SICARD C, SASSI H B, et al. Design of ZnO nanostructured films: Characterization and ecotoxicological studies [J]. Thin Solid Films, 2011, 519(10): 3340-3345. doi: 10.1016/j.tsf.2011.01.257
|
[108] |
MAHFOOZ S, SHAMIM A, HUSAIN A, et al. Physicochemical characterisation and ecotoxicological assessment of nano-silver using two cyanobacteria Nostoc muscorum and Plectonema boryanum [J]. International Journal of Environmental Science and Technology, 2019, 16(8): 4407-4418. doi: 10.1007/s13762-018-1923-4
|
[109] |
SOHN E K, JOHARI S A, KIM T G, et al. Aquatic toxicity comparison of silver nanoparticles and silver nanowires [J]. BioMed Research International, 2015, 2015: 893049.
|
[110] |
BRAYNER R, DAHOUMANE S A, YÉPRÉMIAN C, et al. ZnO nanoparticles: Synthesis, characterization, and ecotoxicological studies [J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2010, 26(9): 6522-6528. doi: 10.1021/la100293s
|
[111] |
CHEN P Y, POWELL B A, MORTIMER M, et al. Adaptive interactions between zinc oxide nanoparticles and Chlorella sp. [J]. Environmental Science & Technology, 2012, 46(21): 12178-12185.
|
[112] |
MA S, LIN D H. The biophysicochemical interactions at the interfaces between nanoparticles and aquatic organisms: Adsorption and internalization [J]. Environmental Science. Processes & Impacts, 2013, 15(1): 145-160.
|
[113] |
WANG F, GUAN W, XU L, et al. Effects of nanoparticles on algae: Adsorption, distribution, ecotoxicity and fate [J]. Applied Sciences, 2019, 9(8): 1534. doi: 10.3390/app9081534
|
[114] |
HARJA M, BUEMA G, BULGARIU L, et al. Removal of cadmium(II) from aqueous solution by adsorption onto modified algae and ash [J]. Korean Journal of Chemical Engineering, 2015, 32(9): 1804-1811. doi: 10.1007/s11814-015-0016-z
|
[115] |
ZHANG J L, XIANG Q Q, SHEN L, et al. Surface charge-dependent bioaccumulation dynamics of silver nanoparticles in freshwater algae [J]. Chemosphere, 2020, 247: 125936. doi: 10.1016/j.chemosphere.2020.125936
|
[116] |
HUANG B, MIAO A J, XIAO L, et al. Influence of nitrogen limitation on the bioaccumulation kinetics of hematite nanoparticles in the freshwater alga Euglena intermedia [J]. Environmental Science:Nano, 2017, 4(9): 1840-1850. doi: 10.1039/C7EN00477J
|
[117] |
ZHANG C, CHEN X H, WANG J T, et al. Toxicity of zinc oxide nanoparticles on marine microalgae possessing different shapes and surface structures [J]. Environmental Engineering Science, 2018, 35(8): 785-790. doi: 10.1089/ees.2017.0241
|
[118] |
RIBEIRO F, GALLEGO-URREA J A, GOODHEAD R M, et al. Uptake and elimination kinetics of silver nanoparticles and silver nitrate by Raphidocelis subcapitata: The influence of silver behaviour in solution [J]. Nanotoxicology, 2015, 9(6): 686-695. doi: 10.3109/17435390.2014.963724
|
[119] |
LANKOFF A, SANDBERG W J, WEGIEREK-CIUK A, et al. The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells [J]. Toxicology Letters, 2012, 208(3): 197-213. doi: 10.1016/j.toxlet.2011.11.006
|
[120] |
von MOOS N, BOWEN P, SLAVEYKOVA V I. Bioavailability of inorganic nanoparticles to planktonic bacteria and aquatic microalgae in freshwater [J]. Environmental Science:Nano, 2014, 1(3): 214. doi: 10.1039/c3en00054k
|
[121] |
MAHANA A, GULIY O I, MEHTA S K. Accumulation and cellular toxicity of engineered metallic nanoparticle in freshwater microalgae: Current status and future challenges [J]. Ecotoxicology and Environmental Safety, 2021, 208: 111662. doi: 10.1016/j.ecoenv.2020.111662
|
[122] |
NGUYEN M K, MOON J Y, LEE Y C. Microalgal ecotoxicity of nanoparticles: An updated review [J]. Ecotoxicology and Environmental Safety, 2020, 201: 110781. doi: 10.1016/j.ecoenv.2020.110781
|
[123] |
WORMS I A M, BOLTZMAN J, GARCIA M, et al. Cell-wall-dependent effect of carboxyl-CdSe/ZnS quantum dots on lead and copper availability to green microalgae [J]. Environmental Pollution, 2012, 167: 27-33. doi: 10.1016/j.envpol.2012.03.030
|
[124] |
NAVARRO E, BAUN A, BEHRA R, et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi [J]. Ecotoxicology (London, England), 2008, 17(5): 372-386. doi: 10.1007/s10646-008-0214-0
|
[125] |
TRIPATHI D K, TRIPATHI A, Shweta, et al. Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: A concentric review [J]. Frontiers in Microbiology, 2017, 8: 07.
|
[126] |
WANG S S, LV J T, MA J Y, et al. Cellular internalization and intracellular biotransformation of silver nanoparticles in Chlamydomonas reinhardtii [J]. Nanotoxicology, 2016, 10(8): 1129-1135. doi: 10.1080/17435390.2016.1179809
|
[127] |
PULIDO-REYES G, BRIFFA S M, HURTADO-GALLEGO J, et al. Internalization and toxicological mechanisms of uncoated and PVP-coated cerium oxide nanoparticles in the freshwater alga Chlamydomonas reinhardtii [J]. Environmental Science:Nano, 2019, 6(6): 1959-1972. doi: 10.1039/C9EN00363K
|
[128] |
ZHAO J, CAO X S, LIU X Y, et al. Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: Adhesion, uptake, and toxicity [J]. Nanotoxicology, 2016, 10(9): 1297-1305. doi: 10.1080/17435390.2016.1206149
|
[129] |
MELEGARI S P, PERREAULT F, COSTA R H R, et al. Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii [J]. Aquatic Toxicology, 2013, 142/143: 431-440. doi: 10.1016/j.aquatox.2013.09.015
|
[130] |
CHERCHI C, CHERNENKO T, DIEM M, et al. Impact of nano titanium dioxide exposure on cellular structure of Anabaena variabilis and evidence of internalization [J]. Environmental Toxicology and Chemistry, 2011, 30(4): 861-869. doi: 10.1002/etc.445
|
[131] |
BHUVANESHWARI M, ISWARYA V, ARCHANAA S, et al. Cytotoxicity of ZnO NPs towards fresh water algae Scenedesmus obliquus at low exposure concentrations in UV-C, visible and dark conditions [J]. Aquatic Toxicology, 2015, 162: 29-38. doi: 10.1016/j.aquatox.2015.03.004
|
[132] |
KOSAK NÉE RÖHDER L A, BRANDT T, SIGG L, et al. Uptake and effects of cerium(III) and cerium oxide nanoparticles to Chlamydomonas reinhardtii [J]. Aquatic Toxicology, 2018, 197: 41-46. doi: 10.1016/j.aquatox.2018.02.004
|
[133] |
NAM H Y, KWON S M, CHUNG H, et al. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles [J]. Journal of Controlled Release, 2009, 135(3): 259-267. doi: 10.1016/j.jconrel.2009.01.018
|
[134] |
LIMBACH L K, WICK P, MANSER P, et al. Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress [J]. Environmental Science & Technology, 2007, 41(11): 4158-4163.
|
[135] |
DAMM E M, PELKMANS L, KARTENBECK J, et al. Clathrin- and caveolin-1-independent endocytosis: Entry of Simian virus 40 into cells devoid of caveolae [J]. The Journal of Cell Biology, 2005, 168(3): 477-488. doi: 10.1083/jcb.200407113
|
[136] |
BUNDSCHUH M, SEITZ F, ROSENFELDT R R, et al. Effects of nanoparticles in fresh waters: Risks, mechanisms and interactions [J]. Freshwater Biology, 2016, 61(12): 2185-2196. doi: 10.1111/fwb.12701
|
[137] |
ROY R, PARASHAR A, BHUVANESHWARI M, et al. Differential effects of P25 TiO2 nanoparticles on freshwater green microalgae: Chlorella and Scenedesmus species [J]. Aquatic Toxicology, 2016, 176: 161-171. doi: 10.1016/j.aquatox.2016.04.021
|
[138] |
WANG J, WANG W X. Significance of physicochemical and uptake kinetics in controlling the toxicity of metallic nanomaterials to aquatic organisms [J]. Journal of Zhejiang University Science A, 2014, 15(8): 573-592. doi: 10.1631/jzus.A1400109
|
[139] |
MORENO-GARRIDO I, PÉREZ S, BLASCO J. Toxicity of silver and gold nanoparticles on marine microalgae [J]. Marine Environmental Research, 2015, 111: 60-73. doi: 10.1016/j.marenvres.2015.05.008
|
[140] |
MARSALEK B, JANCULA D, MARSALKOVA E, et al. Multimodal action and selective toxicity of zerovalent iron nanoparticles against cyanobacteria [J]. Environmental Science & Technology, 2012, 46(4): 2316-2323.
|
[141] |
NAVARRO E, WAGNER B, ODZAK N, et al. Effects of differently coated silver nanoparticles on the photosynthesis of Chlamydomonas reinhardtii [J]. Environmental Science & Technology, 2015, 49(13): 8041-8047.
|
[142] |
WANG L, HUANG X L, SUN W L, et al. A global metabolomic insight into the oxidative stress and membrane damage of copper oxide nanoparticles and microparticles on microalga Chlorella vulgaris [J]. Environmental Pollution, 2020, 258: 113647. doi: 10.1016/j.envpol.2019.113647
|
[143] |
AKTER M, SIKDER M T, RAHMAN M M, et al. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives [J]. Journal of Advanced Research, 2018, 9: 1-16. doi: 10.1016/j.jare.2017.10.008
|
[144] |
PIKULA K, MINTCHEVA N, KULINICH S A, et al. Aquatic toxicity and mode of action of CdS and ZnS nanoparticles in four microalgae species [J]. Environmental Research, 2020, 186: 109513. doi: 10.1016/j.envres.2020.109513
|
[145] |
HJORTH R, SØRENSEN S N, OLSSON M E, et al. A certain shade of green: Can algal pigments reveal shading effects of nanoparticles? [J]. Integrated Environmental Assessment and Management, 2016, 12(1): 200-202. doi: 10.1002/ieam.1728
|
[146] |
HARTMANN N B, der KAMMER F V, HOFMANN T, et al. Algal testing of titanium dioxide nanoparticles—Testing considerations, inhibitory effects and modification of cadmium bioavailability [J]. Toxicology, 2010, 269(2/3): 190-197.
|
[147] |
WU D, YANG S X, DU W C, et al. Effects of titanium dioxide nanoparticles on Microcystis aeruginosa and microcystins production and release [J]. Journal of Hazardous Materials, 2019, 377: 1-7. doi: 10.1016/j.jhazmat.2019.05.013
|
[148] |
FU L, HAMZEH M, DODARD S, et al. Effects of TiO2 nanoparticles on ROS production and growth inhibition using freshwater green algae pre-exposed to UV irradiation [J]. Environmental Toxicology and Pharmacology, 2015, 39(3): 1074-1080. doi: 10.1016/j.etap.2015.03.015
|
[149] |
DALAI S, PAKRASHI S, BHUVANESHWARI M, et al. Toxic effect of Cr(VI) in presence of n-TiO2 and n-Al2O3 particles towards freshwater microalgae [J]. Aquatic Toxicology, 2014, 146: 28-37. doi: 10.1016/j.aquatox.2013.10.029
|
[150] |
ZHAO Z L, XU L M, WANG Y, et al. Toxicity mechanism of silver nanoparticles to Chlamydomonas reinhardtii: Photosynthesis, oxidative stress, membrane permeability, and ultrastructure analysis [J]. Environmental Science and Pollution Research International, 2021, 28(12): 15032-15042. doi: 10.1007/s11356-020-11714-y
|
[151] |
SENDRA M, BLASCO J, ARAÚJO C V M. Is the cell wall of marine phytoplankton a protective barrier or a nanoparticle interaction site? Toxicological responses of Chlorella autotrophica and Dunaliella salina to Ag and CeO2 nanoparticles [J]. Ecological Indicators, 2018, 95: 1053-1067. doi: 10.1016/j.ecolind.2017.08.050
|
[152] |
HAZANI A A, IBRAHIM M M, ARIF I A, et al. Ecotoxicity of Ag-nanoparticles to microalgae[J]. Journal of Pure and Applied Microbiology, 2013, 7: 233-241.
|
[153] |
FU P P, XIA Q S, HWANG H M, et al. Mechanisms of nanotoxicity: Generation of reactive oxygen species [J]. Journal of Food and Drug Analysis, 2014, 22(1): 64-75. doi: 10.1016/j.jfda.2014.01.005
|
[154] |
da COSTA C H, PERREAULT F, OUKARROUM A, et al. Effect of chromium oxide (III) nanoparticles on the production of reactive oxygen species and photosystem II activity in the green alga Chlamydomonas reinhardtii [J]. Science of the Total Environment, 2016, 565: 951-960. doi: 10.1016/j.scitotenv.2016.01.028
|
[155] |
MISRA S K, DYBOWSKA A, BERHANU D, et al. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies [J]. Science of the Total Environment, 2012, 438: 225-232. doi: 10.1016/j.scitotenv.2012.08.066
|
[156] |
YU S J, LAI Y J, DONG L J, et al. Intracellular dissolution of silver nanoparticles: Evidence from double stable isotope tracing [J]. Environmental Science & Technology, 2019, 53(17): 10218-10226.
|
[157] |
HUND-RINKE K, SIMON M. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids [J]. Environmental Science and Pollution Research International, 2006, 13(4): 225-232. doi: 10.1065/espr2006.06.311
|
[158] |
CHEN L Z, ZHOU L N, LIU Y D, et al. Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii [J]. Ecotoxicology and Environmental Safety, 2012, 84: 155-162. doi: 10.1016/j.ecoenv.2012.07.019
|
[159] |
JI J, LONG Z F, LIN D H. Toxicity of oxide nanoparticles to the green algae Chlorella sp. [J]. Chemical Engineering Journal, 2011, 170(2/3): 525-530.
|
[160] |
CHE X K, DING R R, LI Y T, et al. Mechanism of long-term toxicity of CuO NPs to microalgae [J]. Nanotoxicology, 2018, 12(8): 923-939. doi: 10.1080/17435390.2018.1498928
|
[161] |
van HOECKE K, de SCHAMPHELAERE K A C, ALI Z, et al. Ecotoxicity and uptake of polymer coated gold nanoparticles [J]. Nanotoxicology, 2013, 7(1): 37-47. doi: 10.3109/17435390.2011.626566
|
[162] |
RENAULT S, BAUDRIMONT M, MESMER-DUDONS N, et al. Impacts of gold nanoparticle exposure on two freshwater species: A phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea) [J]. Gold Bulletin, 2008, 41(2): 116-126. doi: 10.1007/BF03216589
|
[163] |
PERREAULT F, BOGDAN N, MORIN M, et al. Interaction of gold nanoglycodendrimers with algal cells (Chlamydomonas reinhardtii) and their effect on physiological processes [J]. Nanotoxicology, 2012, 6(2): 109-120. doi: 10.3109/17435390.2011.562325
|
[164] |
HE X X, XIE C J, MA Y H, et al. Size-dependent toxicity of ThO2 nanoparticles to green algae Chlorella pyrenoidosa [J]. Aquatic Toxicology, 2019, 209: 113-120. doi: 10.1016/j.aquatox.2019.02.003
|
[165] |
YANG K, XING B S. Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water [J]. Environmental Pollution, 2007, 145(2): 529-537. doi: 10.1016/j.envpol.2006.04.020
|
[166] |
DENG R, LIN D H, ZHU L Z, et al. Nanoparticle interactions with co-existing contaminants: Joint toxicity, bioaccumulation and risk [J]. Nanotoxicology, 2017, 11(5): 591-612. doi: 10.1080/17435390.2017.1343404
|
[167] |
KIM I, LEE B T, KIM H A, et al. Citrate coated silver nanoparticles change heavy metal toxicities and bioaccumulation of Daphnia magna [J]. Chemosphere, 2016, 143: 99-105. doi: 10.1016/j.chemosphere.2015.06.046
|
[168] |
FANG Q, SHI X J, ZHANG L P, et al. Effect of titanium dioxide nanoparticles on the bioavailability, metabolism, and toxicity of pentachlorophenol in zebrafish larvae [J]. Journal of Hazardous Materials, 2015, 283: 897-904. doi: 10.1016/j.jhazmat.2014.10.039
|
[169] |
LIU N, WANG Y P, GE F, et al. Antagonistic effect of nano-ZnO and cetyltrimethyl ammonium chloride on the growth of Chlorella vulgaris: Dissolution and accumulation of nano-ZnO [J]. Chemosphere, 2018, 196: 566-574. doi: 10.1016/j.chemosphere.2017.12.184
|
[170] |
NADDAFI K, ZARE M R, NAZMARA S. Investigating potential toxicity of phenanthrene adsorbed to nano-ZnO using Daphnia magna [J]. Toxicological & Environmental Chemistry, 2011, 93(4): 729-737.
|
[171] |
HUANG B, WEI Z B, YANG L Y, et al. Combined toxicity of silver nanoparticles with hematite or plastic nanoparticles toward two freshwater algae [J]. Environmental Science & Technology, 2019, 53(7): 3871-3879.
|
[172] |
LING L L, LIU W J, ZHANG S, et al. Magnesium oxide embedded nitrogen self-doped biochar composites: Fast and high-efficiency adsorption of heavy metals in an aqueous solution [J]. Environmental Science & Technology, 2017, 51(17): 10081-10089.
|
[173] |
HU J, ZHANG Z C, ZHANG C, et al. Al2O3 nanoparticle impact on the toxic effect of Pb on the marine microalga Isochrysis galbana [J]. Ecotoxicology and Environmental Safety, 2018, 161: 92-98. doi: 10.1016/j.ecoenv.2018.05.090
|
[174] |
SAHLE-DEMESSIE E, HAN C, ZHAO A, et al. Interaction of engineered nanomaterials with hydrophobic organic pollutants [J]. Nanotechnology, 2016, 27(28): 284003. doi: 10.1088/0957-4484/27/28/284003
|
[175] |
何莹, 刘洋, 陈治廷, 等. 溶解性有机质的表面吸附行为及其对金属基纳米颗粒环境行为的影响 [J]. 环境化学, 2019, 38(8): 1757-1767.
HE Y, LIU Y, CHEN Z T, et al. Surface adsorption of dissolved organic matters and their effects on environmental behaviors of metal-based nanoparticles [J]. Environmental Chemistry, 2019, 38(8): 1757-1767(in Chinese).
|
[176] |
ZHANG C, CHEN X H, TAN L J, et al. Combined toxicities of copper nanoparticles with carbon nanotubes on marine microalgae Skeletonema costatum [J]. Environmental Science and Pollution Research International, 2018, 25(13): 13127-13133. doi: 10.1007/s11356-018-1580-7
|
[177] |
NEALE P A, JÄMTING Å K, O'MALLEY E, et al. Behaviour of titanium dioxide and zinc oxide nanoparticles in the presence of wastewater-derived organic matter and implications for algal toxicity [J]. Environmental Science:Nano, 2015, 2(1): 86-93. doi: 10.1039/C4EN00161C
|
[178] |
WANG Z Y, LI J, ZHAO J, et al. Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter [J]. Environmental Science & Technology, 2011, 45(14): 6032-6040.
|
[179] |
LI S X, WANG S Q, YAN B, et al. Surface properties of nanoparticles dictate their toxicity by regulating adsorption of humic acid molecules [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(41): 13705-13716.
|
[180] |
QIAN H F, ZHU K, LU H P, et al. Contrasting silver nanoparticle toxicity and detoxification strategies in Microcystis aeruginosa and Chlorella vulgaris: New insights from proteomic and physiological analyses [J]. Science of the Total Environment, 2016, 572: 1213-1221. doi: 10.1016/j.scitotenv.2016.08.039
|
[181] |
DU S T, ZHANG P, ZHANG R R, et al. Reduced graphene oxide induces cytotoxicity and inhibits photosynthetic performance of the green alga Scenedesmus obliquus [J]. Chemosphere, 2016, 164: 499-507. doi: 10.1016/j.chemosphere.2016.08.138
|
[182] |
ZHOU K, HU Y, ZHANG L, et al. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae [J]. Scientific Reports, 2016, 6: 32998. doi: 10.1038/srep32998
|
[183] |
CHIU M H, KHAN Z A, GARCIA S G, et al. Effect of engineered nanoparticles on exopolymeric substances release from marine phytoplankton [J]. Nanoscale Research Letters, 2017, 12(1): 620. doi: 10.1186/s11671-017-2397-x
|
[184] |
HE M, YAN Y, PEI F, et al. Improvement on lipid production by Scenedesmus obliquus triggered by low dose exposure to nanoparticles [J]. Scientific Reports, 2017, 7(1): 15526. doi: 10.1038/s41598-017-15667-0
|
[185] |
CHEN B, LI F, LIU N, et al. Role of extracellular polymeric substances from Chlorella vulgaris in the removal of ammonium and orthophosphate under the stress of cadmium [J]. Bioresource Technology, 2015, 190: 299-306. doi: 10.1016/j.biortech.2015.04.080
|
[186] |
HENDERSON R K, BAKER A, PARSONS S A, et al. Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms [J]. Water Research, 2008, 42(13): 3435-3445. doi: 10.1016/j.watres.2007.10.032
|
[187] |
WINGENDER J, NEU T R, FLEMMING H C. What are bacterial extracellular polymeric substances?[M]. Microbial Extracellular Polymeric Substances. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999: 1-19.
|
[188] |
TAYLOR C, MATZKE M, KROLL A, et al. Toxic interactions of different silver forms with freshwater green algae and cyanobacteria and their effects on mechanistic endpoints and the production of extracellular polymeric substances [J]. Environmental Science:Nano, 2016, 3(2): 396-408. doi: 10.1039/C5EN00183H
|
[189] |
QUIGG A, CHIN W C, CHEN C S, et al. Direct and indirect toxic effects of engineered nanoparticles on algae: Role of natural organic matter [J]. ACS Sustainable Chemistry & Engineering, 2013, 1(7): 686-702.
|