[1] |
HONG Y, HUANG X, THOMPSON J R, et al. China's soil pollution: urban brownfields[J]. Science, 2014, 344(6185): 691-692.
|
[2] |
梁竞, 王世杰, 张文毓, 等. 美国污染场地修复技术对我国修复行业发展的启示[J]. 环境工程, 2021, 39(6): 173-178. doi: 10.13205/j.hjgc.202106026
|
[3] |
中华人民共和国国务院. 土壤污染防治行动计划[Z]. 2016-05-31. http://www.gov.cn/xinwen/2016-05/31/content_5078467.htm.
|
[4] |
全国人民代表大会常务委员会. 中华人民共和国土壤污染防治法[Z]. 2020-08-31. http://www.gov.cn/xinwen/2018-08/31/content_5318231.htm.
|
[5] |
骆永明, 滕应. 中国土壤污染与修复科技研究进展和展望[J]. 土壤学报, 2020, 57(5): 1137-1142.
|
[6] |
HERON G, CARROLL S and NIELSEN S G. Full-scale removal of DNAPL constituents using steam-enhanced extraction and electrical resistance heating[J]. Ground Water Monitoring & Remediation, 2005, 25(4): 92-107.
|
[7] |
HERON G, LACHANCE J and BAKER R. Removal of PCE DNAPL from tight clays using in situ thermal desorption[J]. Groundwater Monitoring & Remediation, 2013, 33(4): 31-43.
|
[8] |
NILSSON B, TZOVOLOU D, JECZALIK M, et al. Combining steam injection with hydraulic fracturing for the in situ remediation of the unsaturated zone of a fractured soil polluted by jet fuel[J]. Journal of Environmental Management, 2011, 92(3): 695-707. doi: 10.1016/j.jenvman.2010.10.004
|
[9] |
ZHAO C, DONG Y, FENG Y P, et al. Thermal desorption for remediation of contaminated soil: A review[J]. Chemosphere, 2019, 221: 841-855. doi: 10.1016/j.chemosphere.2019.01.079
|
[10] |
曲建升, 陈伟, 曾静静, 等. 国际碳中和战略行动与科技布局分析及对我国的启示建议[J]. 中国科学院院刊, 2022, 37(4): 444-458. doi: 10.16418/j.issn.1000-3045.20210829001
|
[11] |
侯德义, 李广贺. 污染土壤绿色可持续修复的内涵与发展方向分析[J]. 环境保护, 2016, 44(20): 16-19. doi: 10.14026/j.cnki.0253-9705.2016.20.003
|
[12] |
新华网. 中共中央 国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[EB/OL]. http://www.news.cn/2021-10/24/c_1127990632.htm, 2022-09-16.
|
[13] |
STROO H F, LEESON A, MARQUSEE J A, et al. Chlorinated ethene source remediation: lessons learned[J]. Environmental Science & Technology, 2012, 46(12): 6438-6447.
|
[14] |
DING D, SONG X, WEI C L, et al. A review on the sustainability of thermal treatment for contaminated soils[J]. Environmental Pollution, 2019, 253: 449-463. doi: 10.1016/j.envpol.2019.06.118
|
[15] |
KINGSTON J, JOHNSON P C, KUEPER B H, et al. In situ thermal treatment of chlorinated solvent source zones[J]. New York:Springer, 2014: 510-511.
|
[16] |
HORST J, MUNHOLLAND J, HEGELE P, et al. In situ thermal remediation for source areas: technology advances and a review of the market from 1988–2020[J]. Groundwater Monitoring & Remediation, 2021, 41(1): 17-31.
|
[17] |
VIDONISH J E, ZYGOURAKIS K, MASIELLO C A, et al. Thermal treatment of hydrocarbon-impacted soils: a review of technology innovation for sustainable remediation[J]. Engineering, 2016, 2(4): 426-437. doi: 10.1016/J.ENG.2016.04.005
|
[18] |
MCGEE B. Electro‐thermal dynamic stripping process for in situ remediation under an occupied apartment building[J]. Remediation Journal, 2003, 13(3): 67-79. doi: 10.1002/rem.10075
|
[19] |
GRANT G P, MAJOR D, SCHOLES G C, et al. Smoldering combustion (STAR) for the treatment of contaminated soils: examining limitations and defining success[J]. Remediation Journal, 2016, 26(3): 27-51. doi: 10.1002/rem.21468
|
[20] |
HARCLERODE M A, LAL P and MILLER M E. Estimating social impacts of a remediation project life cycle with environmental footprint evaluation tools[J]. Remediation Journal, 2013, 24(1): 5-20. doi: 10.1002/rem.21374
|
[21] |
FISHER A. Life-cycle assessment of in situ thermal remediation[J]. Remediation the Journal of Environmental Cleanup Costs, Technologies & Techniques, 2012, 22(4): 75-92.
|
[22] |
LEMMING G, HAUSCHILD M Z, CHAMBON J, et al. Environmental impacts of remediation of a trichloroethene-contaminated site: life cycle assessment of remediation alternatives[J]. Environmental Science & Technology, 2010, 44(23): 9163.
|
[23] |
USEPA, Environmental footprint analysis of steam enhanced extraction remedy: EPA 542-R-14-004[EB/OL]. [2022-02-25]. https://clu-in.org/greenremediation/docs/Williams-AFB-Footprint-Evaluation.pdf, 2014.
|
[24] |
BALDOCK J, CHESHER L, REID D, et al. Assessment of a large scall in-situ thermal project performed at a chlorinated solvent site in the UK[EB/OL]. [2022-02-24]. http://clu-in.info/download/contaminantfocus/fracrock/Baldock-Aqua-paper.pdf,2010.
|
[25] |
江亿, 杨秀. 在能源分析中采用等效电方法[J]. 中国能源, 2010, 32(5): 7-13. doi: 10.3969/j.issn.1003-2355.2010.05.001
|
[26] |
LEMMING G, NIELSEN S G, WEBER K, et al. Optimizing the environmental performance of in situ thermal remediation technologies using life cycle assessment[J]. Ground Water Monitoring and Remediation, 2013, 33(3): 38-51. doi: 10.1111/gwmr.12014
|
[27] |
HERON G, PARKER K, FOURNIER S, et al. World's largest in situ thermal desorption project: challenges and solutions[J]. Ground Water Monitoring & Remediation, 2015, 35(3): 89-100.
|
[28] |
CAPPUYNS V and KESSEN B. Evaluation of the environmental impact of brownfield remediation options: comparison of two life cycle assessment-based evaluation tools[J]. Environmental Technology, 2012, 33(21): 2447-2459. doi: 10.1080/09593330.2012.671854
|
[29] |
LI T T, LI Y Z, ZHAI Z Z, et al. Energy-saving strategies and their energy analysis and exergy analysis for in situ thermal remediation system of polluted-soil[J]. Energies, 2019, 12(20): 1-28.
|
[30] |
赵良, 白建华, 辛颂旭, 等. 中国可再生能源发展路径研究[J]. 中国电力, 2016, 49: 178-184. doi: 10.11930/j.issn.1004-9649.2016.08.178.03
|
[31] |
COLLINS E, ELMORE A C and CROW M. Using conditional probability to predict solar-powered pump-and-treat performance[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2013, 17(1): 31-37. doi: 10.1061/(ASCE)HZ.2153-5515.0000144
|
[32] |
CONROY J P, ELMORE A C and CROW M. Capture zone comparison for photovoltaic microgrid-powered pump and treat remediation[J]. Journal of Hazardous Toxic & Radioactive Waste, 2014, 18(3): 04014009.
|
[33] |
GAMAGE K J and PATHIRANA W. A review of green remediation technologies and feasibility study of integrating renewable energy into contaminated site in northern cyprus[C]//Yenilenebilir Enerji Kaynakları Sempozyumu, 2013.
|
[34] |
SIERRA M J, MILLáN R, FéLIX A, et al. Sustainable remediation of mercury contaminated soils by thermal desorption[J]. Environmental Science& Pollution Research, 2016, 23: 4898-4907.
|
[35] |
NAVARRO A, CAñADAS I and RODRíGUEZ J. Thermal treatment of mercury mine wastes using a rotary solar kiln[J]. Minerals, 2014, 4(1): 37-51. doi: 10.3390/min4010037
|
[36] |
NAKAMURA T, SENIOR C L, BURNS E G, et al. Solar‐powered soil vapor extraction for removal of dense nonaqueous phase organics from soil[J]. Environmental Letters, 2000, 35(6): 795-816.
|
[37] |
高冰, 魏明磊, 张康, 等. 污染土壤原位太阳能热脱附修复系统: CN112872007A[P]. 2021-06-01.
|
[38] |
NAVARRO A, CARDELLACH E, CAADAS I, et al. Solar thermal vitrification of mining contaminated soils[J]. International Journal of Mineral Processing, 2013, 119: 65-74. doi: 10.1016/j.minpro.2012.12.002
|
[39] |
PAUL F, BAS G, INGRID S, et al. Worldwide application of aquifer thermal energy storage–A review[J]. Renewable & Sustainable Energy Reviews, 2018, 94: 861-876.
|
[40] |
RIJNAARTS H, GAANS P V, SMIT M, et al. Biodegradation of cis-1, 2-dichloroethene in simulated underground thermal energy storage systems[J]. Environmental Science & Technology, 2015, 49(22): 13519-13527.
|
[41] |
MORADI A, M. SMITS K and O. SHARP J. Coupled thermally-enhanced bioremediation and renewable energy storage system: conceptual framework and modeling investigation[J]. Water, 2018, 10(10): 1288. doi: 10.3390/w10101288
|
[42] |
KASTNER O, NORDEN B, KLAPPERER S, et al. Thermal solar energy storage in Jurassic aquifers in northeastern Germany: a simulation study[J]. Renewable Energy, 2017, 104: 290-306. doi: 10.1016/j.renene.2016.12.003
|
[43] |
FERNáNDEZ-MARCHANTE C M, SOUZA F L, MILLáN M, et al. Improving sustainability of electrolytic wastewater treatment processes by green powering[J]. Science of The Total Environment, 2020, 754: 142230.
|
[44] |
SOUZA F L, LANZA M, LLANOS J, et al. A wind-powered BDD electrochemical oxidation process for the removal of herbicides[J]. Journal of Environmental Management, 2015, 158: 36-39.
|
[45] |
BELSKY A A, DOBUSH V S and MALAREV V I. Electro steam thermal complex powered by wind-driven generator for the treatment of the oil formation's bottomhole area[J]. Journal of Physics Conference Series, 2020, 1441: 012020. doi: 10.1088/1742-6596/1441/1/012020
|
[46] |
ROSSMAN A J, HAYDEN N J and RIZZO D M. Low-temperature soil heating using renewable energy[J]. Journal of Environmental Engineering, 2006, 132(5): 537-544. doi: 10.1061/(ASCE)0733-9372(2006)132:5(537)
|
[47] |
HELLRIEGEL U, KURZ E C, LUONG V T, et al. Modular treatment of arsenic-laden brackish groundwater using solar-powered subsurface arsenic removal (SAR) and membrane capacitive deionization (MCDI) in Vietnam[J]. Journal of Water Reuse and Desalination, 2020, 10(4): 513-526. doi: 10.2166/wrd.2020.031
|
[48] |
GENG Z N, LIU B, LI G H, et al. Enhancing DNAPL Removal from low permeability zone using electrical resistance heating with pulsed direct current[J]. Journal of Hazardous Materials, 2021, 413(13): 125455.
|
[49] |
SOUZA F L, LLANOS J, SAEZ C, et al. Performance of wind-powered soil electroremediation process for the removal of 2, 4-D from soil[J]. Journal of Environmental Management, 2016, 171: 128-132.
|
[50] |
GANIYU S O and MARTíNEZ-HUITLE C. The use of renewable energies driving electrochemical technologies for environmental applications[J]. Current Opinion in Electrochemistry, 2020, 22: 211-220. doi: 10.1016/j.coelec.2020.07.007
|
[51] |
PENG S, WANG N and CHEN J J. Steam and air co-injection in removing residual TCE in unsaturated layered sandy porous media[J]. Journal of Contaminant Hydrology, 2013, 153(7): 24-36.
|
[52] |
JANFADA T S, CLASS H, KASIRI N, et al. Comparative experimental study on heat-up efficiencies during injection of superheated and saturated steam into unsaturated soil[J]. International Journal of Heat and Mass Transfer, 2020, 158: 119235. doi: 10.1016/j.ijheatmasstransfer.2019.119235
|
[53] |
葛松, 孟宪荣, 许伟, 等. 原位电阻热脱附土壤升温机制及影响因素[J]. 环境科学, 2020, 41(8): 3822-3828. doi: 10.13227/j.hjkx.202001092
|
[54] |
耿竹凝, 刘波, 黄菀, 等. 电热耦合强化非均质介质中三氯乙烯DNAPL的迁移去除[J]. 环境科学研究, 2020, 33(8): 1911-1918. doi: 10.13198/j.issn.1001-6929.2020.04.23
|
[55] |
XU H J, LI Y Z, GAO L J, et al. Planned heating control strategy and thermodynamic modeling of a natural gas thermal desorption system for contaminated soil[J]. Energies, 2020, 13(3): 642. doi: 10.3390/en13030642
|
[56] |
ZHAI Z Z, YANG L M, LI Y Z, et al. Fuzzy coordination control strategy and thermohydraulic dynamics modeling of a natural gas heating system for in situ soil thermal remediation[J]. Entropy, 2019, 21(10): 971. doi: 10.3390/e21100971
|
[57] |
XIE Q L, MUMFORD K G and KUEPER B H. Modelling gas-phase recovery of volatile organic compounds during in situ thermal treatment[J]. Journal of Contaminant Hydrology, 2017, 234: 103698.
|
[58] |
PARKER J, KIM U, KITANIDIS P, et al. Stochastic cost optimization of DNAPL remediation-Method description and sensitivity study[J]. Environmental Modelling & Software, 2012, 38: 74-88.
|
[59] |
FALCIGLIA PP, GIUSTRA M G and VAGLIASINDI F. Low-temperature thermal desorption of diesel polluted soil: Influence of temperature and soil texture on contaminant removal kinetics[J]. Journal of Hazardous Materials, 2011, 185(1): 392-400. doi: 10.1016/j.jhazmat.2010.09.046
|
[60] |
LIU J, ZHANG H, YAO Z H, et al. Thermal desorption of PCBs contaminated soil with calcium hydroxide in a rotary kiln[J]. Chemosphere, 2019, 220: 1041-1046. doi: 10.1016/j.chemosphere.2019.01.031
|
[61] |
HU G J, LIU H, RANA A, et al. Life cycle assessment of low-temperature thermal desorption-based technologies for drill cuttings treatment[J]. Journal of Hazardous Materials, 2020, 401: 123865.
|
[62] |
LU G H, YUE C S, LIU S Y, et al. Na2S leaching assisting thermal desorption for thoroughly and mildly remediating severely Hg-contaminated soil[J]. Journal of chemical engineering of Japan, 2019, 52(10): 805-810. doi: 10.1252/jcej.19we037
|
[63] |
MA F J, QIAN Z, XU D P, et al. Mercury removal from contaminated soil by thermal treatment with FeCl3 at reduced temperature[J]. Chemosphere, 2014, 117(1): 388-393.
|
[64] |
MA F J, PENG C S, HOU D Y, et al. Citric acid facilitated thermal treatment: An innovative method for the remediation of mercury contaminated soil[J]. Journal of Hazardous Materials, 2015, 300: 546-552. doi: 10.1016/j.jhazmat.2015.07.055
|
[65] |
LIU Y Q, LI X D, ZHANG W W, et al. Pyrolysis of heavy hydrocarbons in weathered petroleum-contaminated soil enhanced with inexpensive additives at low temperatures[J]. Journal of Cleaner Production, 2021, 302: 127017. doi: 10.1016/j.jclepro.2021.127017
|
[66] |
LI J J, WANG L, PENG L B, et al. A combo system consisting of simultaneous persulfate recirculation and alternating current electrical resistance heating for the implementation of heat activated persulfate ISCO[J]. Chemical Engineering Journal, 2020, 385: 123803. doi: 10.1016/j.cej.2019.123803
|
[67] |
HAN Z Y, LI S H, YUE Y, et al. Enhancing remediation of PAH-contaminated soil through coupling electrical resistance heating using Na2S2O8[J]. Environmental Research, 2020, 198(22): 110457.
|
[68] |
MORI P L, KIRKLAND E, FAIRCLOTH H, et al. Combined thermal and zero-valent iron in situ soil mixing remediation technology[J]. Remediation Journal, 2010, 20(2): 9-25. doi: 10.1002/rem.20237
|
[69] |
HERON, G, CHRISTENSEN, T H and ENFIELD, C G. Henry's law constant for trichloroethylene between 10 and 95 °C[J]. Environmental Science & Technology, 1998, 32(10): 1433-1437.
|
[70] |
USMAN M, CHAUDHARY A, BIACHE C, et al. Effect of thermal pre-treatment on the availability of PAHs for successive chemical oxidation in contaminated soils[J]. Environmental Science & Pollution Research, 2015, 23(2): 1-10.
|
[71] |
PARK S, LEE L S, MEDINA V F, et al. Heat-activated persulfate oxidation of PFOA, 6: 2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation[J]. Chemosphere, 2016, 145: 376-383. doi: 10.1016/j.chemosphere.2015.11.097
|
[72] |
HEAD N A, GERHARD J I, INGLIS A M, et al. Field test of electrokinetically-delivered thermally activated persulfate for remediation of chlorinated solvents in clay[J]. Water Research, 2020, 183(13): 116061.
|
[73] |
NGUELEU S K, REZANEZHAD F, AL-RAOUSH R I, et al. Sorption of benzene and naphthalene on (semi)-arid coastal soil as a function of salinity and temperature[J]. Journal of Contaminant Hydrology, 2018, 219: 67-71.
|
[74] |
SLEEP B E and MCCLURE P D. The effect of temperature on adsorption of organic compound to soils[J]. Canadian Geotechnical Journal, 2001, 38(1): 46-52. doi: 10.1139/t00-067
|
[75] |
KOSEGI J M, MINSKER B S and DOUGHERTY D E. Feasibility study of thermal in situ bioremediation[J]. Journal of Environmental Engineering, 2000, 126(7): 601-610. doi: 10.1061/(ASCE)0733-9372(2000)126:7(601)
|
[76] |
PERFUMO A, BANAT I M, MARCHANT R, et al. Thermally enhanced approaches for bioremediation of hydrocarbon-contaminated soils[J]. Chemosphere, 2007, 66(1): 179-184. doi: 10.1016/j.chemosphere.2006.05.006
|
[77] |
SLENDERS H, DOLS P, VERBURG R, et al. Sustainable synergies for the subsurface combining groundwater energy with remediation: an illustration with 2 cases[C]// First International Conference on Frontiers in Shallow Subsurface Technology. 2010.
|
[78] |
HIESTER U and SCHRENK V. Thermally enhanced in-situ remediations beneath buildings during their continued usage – new source removal options for urban sites[C]// ConSoil 2008. 2008.
|
[79] |
US Army Corps of Engineers, Design: in situ thermal remediation: EM 200-1-21[Z]. 2014.https://www.publications.usace.army.mil/.
|
[80] |
BAKER R S and HERON G. In situ delivery of heat by thermal conduction and steam injection for improved DNAPL remediation[EB/OL]. [2022-02-25]. https://terratherm.com/pdf/white%20papers/paper11-11-6-09.pdf, 2014.
|
[81] |
TIMMONS D G, SANDLIN S and TRUSSELL S. Combined technologies: thermal conduction heating and steam enhanced extraction removes 99% of estimated contaminant mass[Z]. EPA's Office of Superfund Remediation and Technology Innovation (OSRTI), Technology News and Trends, 2012, No. 61.
|
[82] |
ROLAND U, HOLZER F and KOPINKE F D. Combining different frequencies for electrical heating of saturated and unsaturated soil zones[J]. Chemical Engineering & Technology, 2011, 34(10): 1645-1651.
|
[83] |
李丁, 李瑞海, 张文清, 等. 一种用于原位燃气热脱附修复的地表覆盖结构: CN213134474U[P]. 2021-05-07.
|
[84] |
HOGGES A R and FALTA R W. Vertical confinement of Injected steam in the vadose zone using cold air injection[J]. Vadose Zone Journal, 2008, 7(2): 732-740. doi: 10.2136/vzj2007.0093
|
[85] |
迟克宇, 李传维, 籍龙杰, 等. 原位电热脱附技术在某有机污染场地修复中的应用效果[J]. 环境工程学报, 2019, 13(9): 2049-2059. doi: 10.12030/j.cjee.201905110
|
[86] |
BEYKE G and FLEMING D. In situ remediation of DNAPL and LNAPL using electrical resistance heating[J]. Remediation Journal, 2005, 15(3): 5-22. doi: 10.1002/rem.20047
|
[87] |
HEGELE P R and MCGEE B C W. Managing the negative impacts of groundwater flow on electrothermal remediation[J]. Remediation Journal, 2017, 27(3): 29-38. doi: 10.1002/rem.21516
|
[88] |
李书鹏, 焦文涛, 李鸿炫, 等. 燃气热脱附技术修复有机污染场地研究与应用进展[J]. 环境工程学报, 2019, 12(9): 2037-2048. doi: 10.12030/j.cjee.201905108
|
[89] |
李奉才, 胡佳晨, 郑阳, 等. 一种土壤原位热脱附修复系统: CN112872004A[P]. 2021-06-1.
|
[90] |
许优, 顾海林, 詹明秀, 等. 有机污染土壤异位直接热脱附装置节能降耗方案[J]. 环境工程学报, 2019, 13(9): 2074-2082. doi: 10.12030/j.cjee.201906011
|