[1] |
GAGLIANO E, SGROI M, FALCIGLIA P P, et al. Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration [J]. Water Research, 2020, 171: 115381. doi: 10.1016/j.watres.2019.115381
|
[2] |
HEPBURN E, MADDEN C, SZABO D, et al. Contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban re-development precinct [J]. Environmental Pollution, 2019, 248: 101-113. doi: 10.1016/j.envpol.2019.02.018
|
[3] |
LIU L Q, QU Y X, HUANG J, et al. Per- and polyfluoroalkyl substances (PFASs) in Chinese drinking water: Risk assessment and geographical distribution [J]. Environmental Sciences Europe, 2021, 33(1): 1-12. doi: 10.1186/s12302-020-00446-y
|
[4] |
YONG Z Y, KIM K Y, OH J E. The occurrence and distributions of per- and polyfluoroalkyl substances (PFAS) in groundwater after a PFAS leakage incident in 2018 [J]. Environmental Pollution, 2021, 268: 115395. doi: 10.1016/j.envpol.2020.115395
|
[5] |
SHARMA B M, BHARAT G K, TAYAL S, et al. Perfluoroalkyl substances (PFAS) in river and ground/drinking water of the Ganges River Basin: Emissions and implications for human exposure [J]. Environmental Pollution, 2016, 208: 704-713. doi: 10.1016/j.envpol.2015.10.050
|
[6] |
GUELFO J L, ADAMSON D T. Evaluation of a national data set for insights into sources, composition, and concentrations of per- and polyfluoroalkyl substances (PFASs) in US drinking water [J]. Environmental Pollution, 2018, 236: 505-513. doi: 10.1016/j.envpol.2018.01.066
|
[7] |
HAGSTROM A L, ANASTAS P, BOISSEVAIN A, et al. Yale School of Public Health Symposium: An overview of the challenges and opportunities associated with per- and polyfluoroalkyl substances (PFAS) [J]. The Science of the Total Environment, 2021, 778: 146192. doi: 10.1016/j.scitotenv.2021.146192
|
[8] |
GHISI R, VAMERALI T, MANZETTI S. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review [J]. Environmental Research, 2019, 169: 326-341. doi: 10.1016/j.envres.2018.10.023
|
[9] |
BRUSSEAU M L. Simulating PFAS transport influenced by rate-limited multi-process retention [J]. Water Research, 2020, 168: 115179. doi: 10.1016/j.watres.2019.115179
|
[10] |
BRUSSEAU M L, JESSUP R E, RAO P S C. Modeling the transport of solutes influenced by multiprocess nonequilibrium [J]. Water Resources Research, 1989, 25(9): 1971-1988. doi: 10.1029/WR025i009p01971
|
[11] |
PÉTRÉ M A, GENEREUX D P, KOROPECKYJ-COX L, et al. Per- and polyfluoroalkyl substance (PFAS) transport from groundwater to streams near a PFAS manufacturing facility in north Carolina, USA [J]. Environmental Science & Technology, 2021, 55(9): 5848-5856.
|
[12] |
LV X Y, SUN Y Y, JI R, et al. Physicochemical factors controlling the retention and transport of perfluorooctanoic acid (PFOA) in saturated sand and limestone porous media [J]. Water Research, 2018, 141: 251-258. doi: 10.1016/j.watres.2018.05.020
|
[13] |
XIAO F, JIN B S, GOLOVKO S A, et al. Sorption and desorption mechanisms of cationic and zwitterionic per- and polyfluoroalkyl substances in natural soils: Thermodynamics and hysteresis [J]. Environmental Science & Technology, 2019, 53(20): 11818-11827.
|
[14] |
NGUYEN T M H, BRÄUNIG J, THOMPSON K, et al. Influences of chemical properties, soil properties, and solution pH on soil-water partitioning coefficients of per- and polyfluoroalkyl substances (PFASs) [J]. Environmental Science & Technology, 2020, 54(24): 15883-15892.
|
[15] |
ZENG J C, BRUSSEAU M L, GUO B. Model validation and analyses of parameter sensitivity and uncertainty for modeling long-term retention and leaching of PFAS in the vadose zone [J]. Journal of Hydrology, 2021, 603: 127172. doi: 10.1016/j.jhydrol.2021.127172
|
[16] |
LOGANATHAN N, WILSON A K. Adsorption, structure, and dynamics of short- and long-chain PFAS molecules in kaolinite: Molecular-level insights [J]. Environmental Science & Technology, 2022, 56(12): 8043-8052.
|
[17] |
LYU Y, BRUSSEAU M L, CHEN W, et al. Adsorption of PFOA at the air-water interface during transport in unsaturated porous media [J]. Environmental Science & Technology, 2018, 52(14): 7745-7753.
|
[18] |
COSTANZA J, ARSHADI M, ABRIOLA L M, et al. Accumulation of PFOA and PFOS at the air-water interface [J]. Environmental Science & Technology Letters, 2019, 6(8): 487-491.
|
[19] |
HUANG D D, SALEEM H, GUO B, et al. The impact of multiple-component PFAS solutions on fluid-fluid interfacial adsorption and transport of PFOS in unsaturated porous media [J]. Science of the Total Environment, 2022, 806: 150595. doi: 10.1016/j.scitotenv.2021.150595
|
[20] |
LYU Y, WANG B H, DU X Q, et al. Air-water interfacial adsorption of C4-C10 perfluorocarboxylic acids during transport in unsaturated porous media [J]. Science of the Total Environment, 2022, 831: 154905. doi: 10.1016/j.scitotenv.2022.154905
|
[21] |
BRUSSEAU M L. Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface [J]. Science of the Total Environment, 2018, 613/614: 176-185. doi: 10.1016/j.scitotenv.2017.09.065
|
[22] |
SILVA J A K, MARTIN W A, JOHNSON J L, et al. Evaluating air-water and NAPL-water interfacial adsorption and retention of Perfluorocarboxylic acids within the Vadose zone [J]. Journal of Contaminant Hydrology, 2019, 223: 103472. doi: 10.1016/j.jconhyd.2019.03.004
|
[23] |
BRUSSEAU M L, TAGHAP H. NAPL-water interfacial area as a function of fluid saturation measured with the interfacial partitioning tracer test method [J]. Chemosphere, 2020, 260: 127562. doi: 10.1016/j.chemosphere.2020.127562
|
[24] |
van GLUBT S, BRUSSEAU M L. Contribution of nonaqueous-phase liquids to the retention and transport of per and polyfluoroalkyl substances (PFAS) in porous media [J]. Environmental Science & Technology, 2021, 55(6): 3706-3715.
|
[25] |
LIAO S C, ARSHADI M, WOODCOCK M J, et al. Influence of residual nonaqueous-phase liquids (NAPLs) on the transport and retention of perfluoroalkyl substances [J]. Environmental Science & Technology, 2022, 56(12): 7976-7985.
|
[26] |
GUO B, ZENG J C, BRUSSEAU M L. A mathematical model for the release, transport, and retention of per- and polyfluoroalkyl substances (PFAS) in the vadose zone [J]. Water Resources Research, 2020, 56(2): e2019WR026667.
|
[27] |
ZENG J C, GUO B. Multidimensional simulation of PFAS transport and leaching in the vadose zone: Impact of surfactant-induced flow and subsurface heterogeneities [J]. Advances in Water Resources, 2021, 155: 104015. doi: 10.1016/j.advwatres.2021.104015
|
[28] |
ZHANG D Q, ZHANG W L, LIANG Y N. Distribution of eight perfluoroalkyl acids in plant-soil-water systems and their effect on the soil microbial community [J]. Science of the Total Environment, 2019, 697: 134146. doi: 10.1016/j.scitotenv.2019.134146
|
[29] |
BRUSSEAU M L, van GLUBT S. The influence of surfactant and solution composition on PFAS adsorption at fluid-fluid interfaces [J]. Water Research, 2019, 161: 17-26. doi: 10.1016/j.watres.2019.05.095
|
[30] |
ZHOU Z, LIANG Y, SHI Y L, et al. Occurrence and transport of perfluoroalkyl acids (PFAAs), including short-chain PFAAs in Tangxun Lake, China [J]. Environmental Science & Technology, 2013, 47(16): 9249-9257.
|
[31] |
DENG S B, NIE Y, DU Z W, et al. Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon [J]. Journal of Hazardous Materials, 2015, 282: 150-157. doi: 10.1016/j.jhazmat.2014.03.045
|
[32] |
PUNYAPALAKUL P, SUKSOMBOON K, PRARAT P, et al. Effects of surface functional groups and porous structures on adsorption and recovery of perfluorinated compounds by inorganic porous silicas [J]. Separation Science and Technology, 2013, 48(5): 775-788. doi: 10.1080/01496395.2012.710888
|
[33] |
MEJIA-AVENDAÑO S, ZHI Y, YAN B, et al. Sorption of polyfluoroalkyl surfactants on surface soils: Effect of molecular structures, soil properties, and solution chemistry [J]. Environmental Science & Technology, 2020, 54(3): 1513-1521.
|
[34] |
UWAYEZU J N, YEUNG L W Y, BÄCKSTRÖM M. Sorption of PFOS isomers on goethite as a function of pH, dissolved organic matter (humic and fulvic acid) and sulfate [J]. Chemosphere, 2019, 233: 896-904. doi: 10.1016/j.chemosphere.2019.05.252
|
[35] |
JOHNSON R L, ANSCHUTZ A J, SMOLEN J M, et al. The adsorption of perfluorooctane sulfonate onto sand, clay, and iron oxide surfaces [J]. Journal of Chemical & Engineering Data, 2007, 52(4): 1165-1170.
|
[36] |
HIGGINS C P, LUTHY R G. Sorption of perfluorinated surfactants on sediments [J]. Environmental Science & Technology, 2006, 40(23): 7251-7256.
|
[37] |
TANG C Y, SHIANG FU Q, GAO D W, et al. Effect of solution chemistry on the adsorption of perfluorooctane sulfonate onto mineral surfaces [J]. Water Research, 2010, 44(8): 2654-2662. doi: 10.1016/j.watres.2010.01.038
|
[38] |
JIA C X, YOU C, PAN G. Effect of temperature on the sorption and desorption of perfluorooctane sulfonate on humic acid [J]. Journal of Environmental Sciences, 2010, 22(3): 355-361. doi: 10.1016/S1001-0742(09)60115-7
|
[39] |
WANG D J, ZHANG W, ZHOU D M. Antagonistic effects of humic acid and iron oxyhydroxide grain-coating on biochar nanoparticle transport in saturated sand [J]. Environmental Science & Technology, 2013, 47(10): 5154-5161.
|
[40] |
WANG F, LIU C S, SHIH K. Adsorption behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on boehmite [J]. Chemosphere, 2012, 89(8): 1009-1014. doi: 10.1016/j.chemosphere.2012.06.071
|
[41] |
WANG F, SHIH K. Adsorption of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on alumina: Influence of solution pH and cations [J]. Water Research, 2011, 45(9): 2925-2930. doi: 10.1016/j.watres.2011.03.007
|
[42] |
SHIH K, WANG F. Adsorption behavior of perfluorochemicals (PFCs) on boehmite: Influence of solution chemistry [J]. Procedia Environmental Sciences, 2013, 18: 106-113. doi: 10.1016/j.proenv.2013.04.015
|
[43] |
ZHAO L X, BIAN J N, ZHANG Y H, et al. Comparison of the sorption behaviors and mechanisms of perfluorosulfonates and perfluorocarboxylic acids on three kinds of clay minerals [J]. Chemosphere, 2014, 114: 51-58. doi: 10.1016/j.chemosphere.2014.03.098
|
[44] |
SCHULTZ M M, HIGGINS C P, HUSET C A, et al. Fluorochemical mass flows in a municipal wastewater treatment facility [J]. Environmental Science & Technology, 2006, 40(23): 7350-7357.
|
[45] |
WU D, TONG M P, KIM H. Influence of perfluorooctanoic acid on the transport and deposition behaviors of bacteria in quartz sand [J]. Environmental Science & Technology, 2016, 50(5): 2381-2388.
|
[46] |
LYU X Y, LIU X, WU X L, et al. Importance of Al/Fe oxyhydroxide coating and ionic strength in perfluorooctanoic acid (PFOA) transport in saturated porous media [J]. Water Research, 2020, 175: 115685. doi: 10.1016/j.watres.2020.115685
|
[47] |
SIRIWARDENA D P, CRIMI M, HOLSEN T M, et al. Influence of groundwater conditions and co-contaminants on sorption of perfluoroalkyl compounds on granular activated carbon [J]. Remediation Journal, 2019, 29(3): 5-15. doi: 10.1002/rem.21603
|
[48] |
YOU C, JIA C X, PAN G. Effect of salinity and sediment characteristics on the sorption and desorption of perfluorooctane sulfonate at sediment-water interface [J]. Environmental Pollution, 2010, 158(5): 1343-1347. doi: 10.1016/j.envpol.2010.01.009
|
[49] |
KWADIJK C J A F, VELZEBOER I, KOELMANS A A. Sorption of perfluorooctane sulfonate to carbon nanotubes in aquatic sediments [J]. Chemosphere, 2013, 90(5): 1631-1636. doi: 10.1016/j.chemosphere.2012.08.041
|
[50] |
DU Z W, DENG S B, CHEN Y G, et al. Removal of perfluorinated carboxylates from washing wastewater of perfluorooctanesulfonyl fluoride using activated carbons and resins [J]. Journal of Hazardous Materials, 2015, 286: 136-143. doi: 10.1016/j.jhazmat.2014.12.037
|
[51] |
LUO Q, ZHAO C W, LIU G X, et al. A porous aromatic framework constructed from benzene rings has a high adsorption capacity for perfluorooctane sulfonate [J]. Scientific Reports, 2016, 6: 20311. doi: 10.1038/srep20311
|
[52] |
XIAO F, ZHANG X R, PENN L, et al. Effects of monovalent cations on the competitive adsorption of perfluoroalkyl acids by kaolinite: Experimental studies and modeling [J]. Environmental Science & Technology, 2011, 45(23): 10028-10035.
|
[53] |
DENG S B, YU Q, HUANG J, et al. Removal of perfluorooctane sulfonate from wastewater by anion exchange resins: Effects of resin properties and solution chemistry [J]. Water Research, 2010, 44(18): 5188-5195. doi: 10.1016/j.watres.2010.06.038
|
[54] |
ZHANG Q Y, DENG S B, YU G, et al. Removal of perfluorooctane sulfonate from aqueous solution by crosslinked chitosan beads: Sorption kinetics and uptake mechanism [J]. Bioresource Technology, 2011, 102(3): 2265-2271. doi: 10.1016/j.biortech.2010.10.040
|
[55] |
GOSS K U. The pKa values of PFOA and other highly fluorinated carboxylic acids [J]. Environmental Science & Technology, 2008, 42(2): 456-458.
|
[56] |
XIAO F. Emerging poly- and perfluoroalkyl substances in the aquatic environment: A review of current literature [J]. Water Research, 2017, 124: 482-495. doi: 10.1016/j.watres.2017.07.024
|
[57] |
BHHATARAI B, GRAMATICA P. Prediction of aqueous solubility, vapor pressure and critical micelle concentration for aquatic partitioning of perfluorinated chemicals [J]. Environmental Science & Technology, 2011, 45(19): 8120-8128.
|
[58] |
JEON J, KANNAN K, LIM B J, et al. Effects of salinity and organic matter on the partitioning of perfluoroalkyl acid (PFAs) to clay particles [J]. Journal of Environmental Monitoring, 2011, 13(6): 1803-1810. doi: 10.1039/c0em00791a
|
[59] |
DENG S B, ZHANG Q Y, NIE Y, et al. Sorption mechanisms of perfluorinated compounds on carbon nanotubes [J]. Environmental Pollution, 2012, 168: 138-144. doi: 10.1016/j.envpol.2012.03.048
|
[60] |
SHARIFAN H, BAGHERI M, WANG D, et al. Fate and transport of per- and polyfluoroalkyl substances (PFASs) in the vadose zone [J]. Science of the Total Environment, 2021, 771: 145427. doi: 10.1016/j.scitotenv.2021.145427
|
[61] |
SHEN C Y, JIN Y, ZHUANG J, et al. Role and importance of surface heterogeneities in transport of particles in saturated porous media [J]. Critical Reviews in Environmental Science and Technology, 2020, 50(3): 244-329. doi: 10.1080/10643389.2019.1629800
|
[62] |
PAN G, JIA C X, ZHAO D Y, et al. Effect of cationic and anionic surfactants on the sorption and desorption of perfluorooctane sulfonate (PFOS) on natural sediments [J]. Environmental Pollution, 2009, 157(1): 325-330. doi: 10.1016/j.envpol.2008.06.035
|
[63] |
ZAGGIA A, CONTE L, FALLETTI L, et al. Use of strong anion exchange resins for the removal of perfluoroalkylated substances from contaminated drinking water in batch and continuous pilot plants [J]. Water Research, 2016, 91: 137-146. doi: 10.1016/j.watres.2015.12.039
|
[64] |
LYU X Y, LIU X, SUN Y Y, et al. Importance of surface roughness on perfluorooctanoic acid (PFOA) transport in unsaturated porous media [J]. Environmental Pollution, 2020, 266: 115343. doi: 10.1016/j.envpol.2020.115343
|
[65] |
XIAO F, SIMCIK M F, HALBACH T R, et al. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in soils and groundwater of a US metropolitan area: Migration and implications for human exposure [J]. Water Research, 2015, 72: 64-74. doi: 10.1016/j.watres.2014.09.052
|
[66] |
WEBER A K, BARBER L B, LEBLANC D R, et al. Geochemical and hydrologic factors controlling subsurface transport of poly- and perfluoroalkyl substances, cape cod, Massachusetts [J]. Environmental Science & Technology, 2017, 51(8): 4269-4279.
|
[67] |
HUNTER ANDERSON R, ADAMSON D T, STROO H F. Partitioning of poly- and perfluoroalkyl substances from soil to groundwater within aqueous film-forming foam source zones [J]. Journal of Contaminant Hydrology, 2019, 220: 59-65. doi: 10.1016/j.jconhyd.2018.11.011
|
[68] |
SHIN H M, VIEIRA V M, RYAN P B, et al. Environmental fate and transport modeling for perfluorooctanoic acid emitted from the Washington Works Facility in West Virginia [J]. Environmental Science & Technology, 2011, 45(4): 1435-1442.
|
[69] |
KIM H, ANNABLE M D, RAO P S. Gaseous transport of volatile organic chemicals in unsaturated porous media: Effect of water-partitioning and air-water interfacial adsorption [J]. Environmental Science & Technology, 2001, 35(22): 4457-4462.
|
[70] |
COSTANZA-ROBINSON M S, CARLSON T D, BRUSSEAU M L. Vapor-phase transport of trichloroethene in an intermediate-scale vadose-zone system: Retention processes and tracer-based prediction [J]. Journal of Contaminant Hydrology, 2013, 145: 82-89. doi: 10.1016/j.jconhyd.2012.12.004
|
[71] |
BRUSSEAU M L. Estimating the relative magnitudes of adsorption to solid-water and air/oil-water interfaces for per- and poly-fluoroalkyl substances [J]. Environmental Pollution, 2019, 254: 113102. doi: 10.1016/j.envpol.2019.113102
|
[72] |
BRUSSEAU M L. The influence of molecular structure on the adsorption of PFAS to fluid-fluid interfaces: Using QSPR to predict interfacial adsorption coefficients [J]. Water Research, 2019, 152: 148-158. doi: 10.1016/j.watres.2018.12.057
|
[73] |
BRUSSEAU M L, YAN N, van GLUBT S, et al. Comprehensive retention model for PFAS transport in subsurface systems [J]. Water Research, 2019, 148: 41-50. doi: 10.1016/j.watres.2018.10.035
|
[74] |
VECITIS C D, PARK H, CHENG J, et al. Enhancement of perfluorooctanoate and perfluorooctanesulfonate activity at acoustic cavitation bubble interfaces [J]. The Journal of Physical Chemistry C, 2008, 112(43): 16850-16857. doi: 10.1021/jp804050p
|
[75] |
SCHAEFER C E, CULINA V, NGUYEN D, et al. Uptake of poly- and perfluoroalkyl substances at the air-water interface [J]. Environmental Science & Technology, 2019, 53(21): 12442-12448.
|
[76] |
LYU Y, BRUSSEAU M L. The influence of solution chemistry on air-water interfacial adsorption and transport of PFOA in unsaturated porous media [J]. Science of the Total Environment, 2020, 713: 136744. doi: 10.1016/j.scitotenv.2020.136744
|
[77] |
BRUSSEAU M L, GUO B, HUANG D D, et al. Ideal versus nonideal transport of PFAS in unsaturated porous media [J]. Water Research, 2021, 202: 117405. doi: 10.1016/j.watres.2021.117405
|
[78] |
PSILLAKIS E, CHENG J, HOFFMANN M R, et al. Enrichment factors of perfluoroalkyl oxoanions at the air/water interface [J]. The Journal of Physical Chemistry. A, 2009, 113(31): 8826-8829. doi: 10.1021/jp902795m
|
[79] |
GUELFO J L, HIGGINS C P. Subsurface transport potential of perfluoroalkyl acids at aqueous film-forming foam (AFFF)-impacted sites [J]. Environmental Science & Technology, 2013, 47(9): 4164-4171.
|
[80] |
MCKENZIE E R, SIEGRIST R L, MCCRAY J E, et al. Effects of chemical oxidants on perfluoroalkyl acid transport in one-dimensional porous media columns [J]. Environmental Science & Technology, 2015, 49(3): 1681-1689.
|
[81] |
BRUSSEAU M L, JANOUSEK H, MURAO A, et al. Synchrotron X-ray microtomography and interfacial partitioning tracer test measurements of napl-water interfacial areas [J]. Water Resources Research, 2008, 44(1): W01411.
|
[82] |
BRUSSEAU M L. Examining the robustness and concentration dependency of PFAS air-water and NAPL-water interfacial adsorption coefficients [J]. Water Research, 2021, 190: 116778. doi: 10.1016/j.watres.2020.116778
|
[83] |
MCKENZIE E R, SIEGRIST R L, MCCRAY J E, et al. The influence of a non-aqueous phase liquid (NAPL) and chemical oxidant application on perfluoroalkyl acid (PFAA) fate and transport [J]. Water Research, 2016, 92: 199-207. doi: 10.1016/j.watres.2016.01.025
|