[1] |
吴烈善, 曾东梅, 莫小荣, 等. 不同钝化剂对重金属污染土壤稳定化效应的研究 [J]. 环境科学, 2015, 36(1): 309-313. doi: 10.13227/j.hjkx.2015.01.041
WU L S, ZENG D M, MO X R, et al. Immobilization impact of different fixatives on heavy metals contaminated soil [J]. Environmental Science, 2015, 36(1): 309-313(in Chinese). doi: 10.13227/j.hjkx.2015.01.041
|
[2] |
AHMAD W, NAJEEB U, ZIA M. Chapter 2 - soil contamination with metals: Sources, types and implications [J]. Soil Remediation and Plants, 2015: 37-61.
|
[3] |
李慧敏, 雷静, 王友东. 腐殖质在土壤重金属污染修复中的作用与展望 [J]. 农业研究与应用, 2017(5): 25-30. doi: 10.3969/j.issn.2095-0764.2017.05.006
LI H M, LEI J, WANG Y D. Roles and prospects of humus in remediation of heavy metal contaminated soil [J]. Agricultural Research and Application, 2017(5): 25-30(in Chinese). doi: 10.3969/j.issn.2095-0764.2017.05.006
|
[4] |
全国土壤污染状况调查公报[J]. 中国环保产业, 2014(5): 10-11全国土壤污染状况调查公报 [J]. China Environmental Protection Industry, 2014(5): 10-11.
|
[5] |
NEWCOMB C J. Humic matter in soil and the environment, principles and controversies [J]. Soil Science Society of America Journal, 2015, 79(5): 1520. doi: 10.2136/sssaj2015.0004br
|
[6] |
de MELO B A G, MOTTA F L, SANTANA M H A. Humic acids: Structural properties and multiple functionalities for novel technological developments [J]. Materials Science and Engineering:C, 2016, 62: 967-974. doi: 10.1016/j.msec.2015.12.001
|
[7] |
PARK J H, LAMB D, PANEERSELVAM P, et al. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils [J]. Journal of Hazardous Materials, 2011, 185(2/3): 549-574.
|
[8] |
毕冬雪, 邓亚娟, 孟凡德, 等. 腐殖质纳米颗粒对镉污染土壤的修复 [J]. 环境工程学报, 2018, 12(5): 1295-1302. doi: 10.12030/j.cjee.201711218
BI D X, DENG Y J, MENG F D, et al. Humic nanoparticles for remediation of Cd-contaminated soils [J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1295-1302(in Chinese). doi: 10.12030/j.cjee.201711218
|
[9] |
杜金彤. 腐殖质与金属离子相互作用的研究[D]. 长春: 长春理工大学, 2020.
DU J T. Study on the interaction between humic substances and metal ions[D]. Changchun: Changchun University of Science and Technology, 2020(in Chinese).
|
[10] |
窦森. 土壤腐殖物质形成转化及其微生物学机理研究进展 [J]. 吉林农业大学学报, 2008, 30(4): 538-547. doi: 10.13327/j.jjlau.2008.04.005
DOU S. Review of formation and transformation of soil humic substance and its microbiologic mechanism [J]. Journal of Jilin Agricultural University, 2008, 30(4): 538-547(in Chinese). doi: 10.13327/j.jjlau.2008.04.005
|
[11] |
李光林. 腐殖酸与几种重金属离子的相互作用及影响因素研究[D]. 重庆: 西南农业大学, 2002.
LI G L. On the reaction of humic acids on some heavy metal ions and the affecting factors[D]. Chongqing: Southwest University, , 2002(in Chinese).
|
[12] |
WANG K J, XING B S. Chemical extractions affect the structure and phenanthrene sorption of soil humin [J]. Environmental Science & Technology, 2005, 39(21): 8333-8340.
|
[13] |
GHABBOUR E A, DAVIES G. Humic substances : structures, models and functions[M]. Cambridge: Royal Society of Chemistry, 2001: 387.
|
[14] |
FRANCIOSO O, SÁNCHEZ-CORTÉS S, TUGNOLI V, et al. Characterization of peat fulvic acid fractions by means of FT-IR, SERS, and 1H, 13C NMR spectroscopy [J]. Applied Spectroscopy, 1998, 52(2): 270-277. doi: 10.1366/0003702981943347
|
[15] |
SARIR M S, DURRANI M I. Utilization of natural resources for increase crop production [J]. Journal of Agricultural and Biological Science, 2006, 1(2): 16-18.
|
[16] |
COATES J D, COLE K A, CHAKRABORTY R, et al. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration [J]. Applied and Environmental Microbiology, 2002, 68(5): 2445-2452. doi: 10.1128/AEM.68.5.2445-2452.2002
|
[17] |
窦森, 李凯, 崔俊涛, 等. 土壤腐殖物质形成转化与结构特征研究进展 [J]. 土壤学报, 2008, 45(6): 1148-1158. doi: 10.3321/j.issn:0564-3929.2008.06.019
DOU S, LI K, CUI J T, et al. Advancement in the study on formation, transformation and structural characteristics of soil humic substances [J]. Acta Pedologica Sinica, 2008, 45(6): 1148-1158(in Chinese). doi: 10.3321/j.issn:0564-3929.2008.06.019
|
[18] |
HAYES M H B, SWIFT R S. An appreciation of the contribution of Frank Stevenson to the advancement of studies of soil organic matter and humic substances [J]. Journal of Soils and Sediments, 2018, 18(4): 1212-1231. doi: 10.1007/s11368-016-1636-6
|
[19] |
郝晓地, 周鹏, 曹亚莉. 污水处理中腐殖质的来源及其演变过程 [J]. 环境工程学报, 2017, 11(1): 1-11. doi: 10.12030/j.cjee.201606072
HAO X D, ZHOU P, CAO Y L. Origins and evolution processes of humic substances in wastewater treatment [J]. Chinese Journal of Environmental Engineering, 2017, 11(1): 1-11(in Chinese). doi: 10.12030/j.cjee.201606072
|
[20] |
黄红丽. 堆肥中木质素的生物降解及其与腐殖质形成关系的研究[D]. 长沙: 湖南大学, 2006.
HUANG H L. Lignin biodegradation and its relationship with humus formation in composting[D]. Changsha: Hunan University, 2006(in Chinese).
|
[21] |
YU M D, HE X S, LIU J M, et al. Characterization of isolated fractions of dissolved organic matter derived from municipal solid waste compost [J]. Science of the Total Environment, 2018, 635: 275-283. doi: 10.1016/j.scitotenv.2018.04.140
|
[22] |
PARSONS J W. Humus chemistry—genesis, composition, reactions [J]. Soil Science, 1983, 135(2): 129-130.
|
[23] |
刘保峰. 土壤腐殖酸及其对重金属化学与生物行为的影响[C]. 中国内蒙古海拉尔: 农业部环境保护科研监测所, 2006: 188-193.
LIU B F. Soil humic acid and its effects on chemical and biological behavior of heavy metals[C]. Hailar, Inner Mongolia, China: Environmental Protection Research and Monitoring Institute, Ministry of Agriculture, 2006: 188-193(in Chinese).
|
[24] |
胡梦淩, 曾和平. 不同来源腐殖质淋洗去除土壤中Cd、Pb的研究 [J]. 环境污染与防治, 2021, 43(1): 14-19. doi: 10.15985/j.cnki.1001-3865.2021.01.003
HU M L, ZENG H P. The performance of different sources of humic substances for leaching removal of Cd and Pb from soils [J]. Environmental Pollution & Control, 2021, 43(1): 14-19(in Chinese). doi: 10.15985/j.cnki.1001-3865.2021.01.003
|
[25] |
LI C, GAO S, ZHANG J, et al. Moisture effect on soil humus characteristics in a laboratory incubation experiment [J]. Soil and Water Research, 2016, 11(No.1): 37-43. doi: 10.17221/21/2015-SWR
|
[26] |
HIRADATE S, YONEZAWA T, TAKESAKO H. Fine fractionation and purification of the fulvic acid fraction using adsorption and precipitation procedures [J]. Soil Science and Plant Nutrition, 2007, 53(4): 413-419. doi: 10.1111/j.1747-0765.2007.00159.x
|
[27] |
陈林倩, 武丹, 王征, 等. 富硒土壤腐殖质的组成及其对铅的作用研究 [J]. 环境工程, 2018, 36(6): 163-168. doi: 10.13205/j.hjgc.201806033
CHEN L Q, WU D, WANG Z, et al. Humus composition in selenium-enriched soil and its effects on lead [J]. Environmental Engineering, 2018, 36(6): 163-168(in Chinese). doi: 10.13205/j.hjgc.201806033
|
[28] |
窦森, 肖彦春, 张晋京. 土壤胡敏素各组分数量及结构特征初步研究 [J]. 土壤学报, 2006, 43(6): 934-940. doi: 10.3321/j.issn:0564-3929.2006.06.008
DOU S, XIAO Y C, ZHANG J J. Quantities and structural characteristics of various fractions of soil humin [J]. Acta Pedologica Sinica, 2006, 43(6): 934-940(in Chinese). doi: 10.3321/j.issn:0564-3929.2006.06.008
|
[29] |
ZEHL K, EINAX J. Influence of atmospheric oxygen on heavy metal mobility in sediment and soil (7 pp) [J]. Journal of Soils and Sediments, 2005, 5(3): 164-170. doi: 10.1065/jss2005.01.132
|
[30] |
BORŮVKA L, DRÁBEK O. Heavy metal distribution between fractions of humic substances in heavily polluted soils [J]. Plant, Soil and Environment, 2011, 50(No.8): 339-345. doi: 10.17221/4041-PSE
|
[31] |
陈亭悦. 腐殖酸不同分子量组分对铅生物有效性的调控效应与机制[D]. 重庆: 西南大学, 2020.
CHEN T Y. Effects of humic acids fractions with different molecular weight on speciation of bioavailability of lead[D]. Chongqing: Southwest University, 2020(in Chinese).
|
[32] |
高泽鹏. 腐殖质的分离及其对苯酚光致溴代反应的影响[D]. 大连: 大连海事大学, 2019.
GAO Z P. Isolation of humus and its effect on photoinduced bromination of phenol[D]. Dalian: Dalian Maritime University, 2019(in Chinese).
|
[33] |
BURDON J. Are the traditional concepts of the structures of humic substances realistic? [J]. Soil Science, 2001, 166(11): 752-769. doi: 10.1097/00010694-200111000-00004
|
[34] |
PICCOLO A. The supramolecular structure of humic substances [J]. Soil Science, 2001, 166(11): 810-832. doi: 10.1097/00010694-200111000-00007
|
[35] |
彭安, 王文华. 水体腐殖酸及其络合物: Ⅰ. 蓟运河腐殖酸的提取和表征 [J]. 环境科学学报, 1981, 1(2): 126-139.
PENG A, WANG W H. Humic substances and their complex compounds in natural waters Ⅰ. extraction and characterization of humic acid from ji-Yun river [J]. Acta Scientiae Circumstantiae, 1981, 1(2): 126-139(in Chinese).
|
[36] |
CHIN Y P, AIKEN G, O'LOUGHLIN E. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances [J]. Environmental Science & Technology, 1994, 28(11): 1853-1858.
|
[37] |
HUANG S W, CHIANG P N, LIU J C, et al. Chromate reduction on humic acid derived from a peat soil - Exploration of the activated sites on HAs for chromate removal [J]. Chemosphere, 2012, 87(6): 587-594. doi: 10.1016/j.chemosphere.2012.01.010
|
[38] |
JIANG J, KAPPLER A. Kinetics of microbial and chemical reduction of humic substances: Implications for electron shuttling [J]. Environmental Science & Technology, 2008, 42(10): 3563-3569.
|
[39] |
朱燕. 土壤胡敏素的结构特征及其对多环芳烃(菲)吸附、解吸机理的研究[D]. 南京: 南京农业大学, 2006.
ZHU Y. Structural characteristics of humin from different soils and sorption-desorption behavior of phenanthrene[D]. Nanjing: Nanjing Agricultural University, 2006(in Chinese).
|
[40] |
ARSHAD M A, RIPMEESTER J A, SCHNITZER M. Attempts to improve solid state 13C nmr spectra of whole mineral soils [J]. Canadian Journal of Soil Science, 1988, 68(3): 593-602. doi: 10.4141/cjss88-057
|
[41] |
刘亚子, 高占启. 腐殖质提取与表征研究进展[J]. 环境科技, 2011, 24(S1): 76-80.
LIU Y Z, GAO Z Q. Progress in research on extraction and characterization of humus[J]. Environmental Science and Technology, 2011, 24(Sup 1): 76-80(in Chinese).
|
[42] |
de JONG R, CAMPBELL C A, NICHOLAICHUK W. Water retention equations and their relationship to soil organic matter and particle size distribution for disturbed samples [J]. Canadian Journal of Soil Science, 1983, 63(2): 291-302. doi: 10.4141/cjss83-029
|
[43] |
朱燕, 代静玉. 腐殖物质对有机污染物的吸附行为及环境学意义 [J]. 土壤通报, 2006, 37(6): 1224-1230. doi: 10.3321/j.issn:0564-3945.2006.06.041
ZHU Y, DAI J Y. Research progress in the structure characterization of humus and its environmental meaning [J]. Chinese Journal of Soil Science, 2006, 37(6): 1224-1230(in Chinese). doi: 10.3321/j.issn:0564-3945.2006.06.041
|
[44] |
陈蕾, 超峰, 王郑, 等. 天然有机质对环境污染物的转化过程的介导作用 [J]. 生态环境学报, 2013, 22(7): 1244-1249. doi: 10.3969/j.issn.1674-5906.2013.07.026
CHEN L, CHAOFENG, WANG Z, et al. Transformation of environmental pollutants mediated by natural organic matter [J]. Ecology and Environmental Sciences, 2013, 22(7): 1244-1249(in Chinese). doi: 10.3969/j.issn.1674-5906.2013.07.026
|
[45] |
燕爱春. 土壤腐殖物质对重金属的吸附特性及其机理研究[D]. 长春: 吉林农业大学, 2019.
YAN A C. Adsorption characteristics and mechanism of heavy metals by soil humus[D]. Changchun: Jilin Agricultural University, 2019(in Chinese).
|
[46] |
张艳敏. 胡敏酸对Hg(Ⅱ)的还原作用及其影响因素研究[D]. 重庆: 西南大学, 2011.
ZHANG Y M. The effects of humic acid on Hg(Ⅱ) abiotic reduction and its influencing factors[D]. Chongqing: Southwest University, 2011(in Chinese).
|
[47] |
MAK M S H, LO I M C. Influences of redox transformation, metal complexation and aggregation of fulvic acid and humic acid on Cr(VI) and As(V) removal by zero-valent iron [J]. Chemosphere, 2011, 84(2): 234-240. doi: 10.1016/j.chemosphere.2011.04.024
|
[48] |
ZHAO K Q, YANG Y, PENG H, et al. Silicon fertilizers, humic acid and their impact on physicochemical properties, availability and distribution of heavy metals in soil and soil aggregates [J]. Science of the Total Environment, 2022, 822: 153483. doi: 10.1016/j.scitotenv.2022.153483
|
[49] |
MAKHINOVA A F, MAKHINOV A N. Role of humus substances in chemical soil pollution during deposit exploitation in Priokhotye and Priamurye [J]. Environmental Research, 2020, 188: 109766. doi: 10.1016/j.envres.2020.109766
|
[50] |
SANNINO F, SPACCINI R, SAVY D, et al. Remediation of highly contaminated soils from an industrial site by employing a combined treatment with exogeneous humic substances and oxidative biomimetic catalysis [J]. Journal of Hazardous Materials, 2013, 261: 55-62. doi: 10.1016/j.jhazmat.2013.06.077
|
[51] |
BARNIE S, ZHANG J, WANG H, et al. The influence of pH, co-existing ions, ionic strength, and temperature on the adsorption and reduction of hexavalent chromium by undissolved humic acid [J]. Chemosphere, 2018, 212: 209-218. doi: 10.1016/j.chemosphere.2018.08.067
|
[52] |
KO I, DAVIS A P, KIM J Y, et al. Effect of contact order on the adsorption of inorganic arsenic species onto hematite in the presence of humic acid [J]. Journal of Hazardous Materials, 2007, 141(1): 53-60. doi: 10.1016/j.jhazmat.2006.06.084
|
[53] |
陈荣平, 张银龙, 马爱军, 等. 腐殖酸改性及其对镉的吸附特性 [J]. 南京林业大学学报(自然科学版), 2014, 38(4): 102-106.
CHEN R P, ZHANG Y L, MA A J, et al. Study on the modification of humic acid and its adsorption to cadmium [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38(4): 102-106(in Chinese).
|
[54] |
ZHANG X, ZHANG P Y, WU Z, et al. Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 435: 85-90.
|
[55] |
何为红. 重金属离子在粘土矿物—胡敏酸复合体上的吸附研究[D]. 南京: 南京农业大学, 2007.
HE W H. Adsorption of heavy metal on clay mineral-humic acid complexes[D]. Nanjing: Nanjing Agricultural University, 2007(in Chinese).
|
[56] |
GARCIA-MINA J M. Stability, solubility and maximum metal binding capacity in metal-humic complexes involving humic substances extracted from peat and organic compost [J]. Organic Geochemistry, 2006, 37(12): 1960-1972. doi: 10.1016/j.orggeochem.2006.07.027
|
[57] |
朱丽珺, 张金池, 宰德欣, 等. 腐殖质对Cu2+和Pb2+的吸附特性 [J]. 南京林业大学学报(自然科学版), 2007, 31(4): 73-76.
ZHU L J, ZHANG J C, ZAI D X, et al. Study on the adsorption of heavy metal Cu2+, Pb2+by humus [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2007, 31(4): 73-76(in Chinese).
|
[58] |
朱丽珺, 张金池, 俞元春, 等. 胡敏酸吸附重金属Cu2+Pb2+Cd2+的特征及影响因素 [J]. 农业环境科学学报, 2008, 27(6): 2240-2245. doi: 10.3321/j.issn:1672-2043.2008.06.020
ZHU L J, ZHANG J C, YU Y C, et al. Characteristics and affecting factors of humic acid adsorbing heavy metals Cu2+Pb2+Cd2+ [J]. Journal of Agro-Environment Science, 2008, 27(6): 2240-2245(in Chinese). doi: 10.3321/j.issn:1672-2043.2008.06.020
|
[59] |
兰亚琼. 水环境中镉离子与腐殖酸作用特性的研究[D]. 西安: 西安建筑科技大学, 2011.
LAN Y Q. Study on characterists of heavy metals and humic acid in the water environment[D]. Xi'an: Xi'an University of Architecture and Technology, 2011(in Chinese).
|
[60] |
JANOŠ P, HŮLA V, BRADNOVÁ P, et al. Reduction and immobilization of hexavalent chromium with coal- and humate-based sorbents [J]. Chemosphere, 2009, 75(6): 732-738. doi: 10.1016/j.chemosphere.2009.01.037
|
[61] |
王强, 魏世强. 胡敏酸吸附解吸Fe3+反应特征研究 [J]. 土壤学报, 2006, 43(3): 414-421. doi: 10.3321/j.issn:0564-3929.2006.03.009
WANG Q, WEI S Q. Reaction characteristics of fe3+ adsorption and desorption by humic acid [J]. Acta Pedologica Sinica, 2006, 43(3): 414-421(in Chinese). doi: 10.3321/j.issn:0564-3929.2006.03.009
|
[62] |
LI H, WANG J H, ZHAO B Y, et al. The role of major functional groups: Multi-evidence from the binding experiments of heavy metals on natural fulvic acids extracted from lake sediments [J]. Ecotoxicology and Environmental Safety, 2018, 162: 514-520. doi: 10.1016/j.ecoenv.2018.07.038
|
[63] |
PHAM A N, ROSE A L, WAITE T D. Kinetics of Cu(II) reduction by natural organic matter [J]. The Journal of Physical Chemistry. A, 2012, 116(25): 6590-6599. doi: 10.1021/jp300995h
|
[64] |
LOVLEY D R, COATES J D, BLUNT-HARRIS E L, et al. Humic substances as electron acceptors for microbial respiration [J]. Nature, 1996, 382(6590): 445-448. doi: 10.1038/382445a0
|
[65] |
LOVLEY D R, BLUNT-HARRIS E L. Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction [J]. Applied and Environmental Microbiology, 1999, 65(9): 4252-4254. doi: 10.1128/AEM.65.9.4252-4254.1999
|
[66] |
袁英, 何小松, 席北斗, 等. 腐殖质氧化还原和电子转移特性研究进展 [J]. 环境化学, 2014, 33(12): 2048-2057. doi: 10.7524/j.issn.0254-6108.2014.12.019
YUAN Y, HE X S, XI B D, et al. Research progress on the redox and electron transfer capacity of humic substances [J]. Environmental Chemistry, 2014, 33(12): 2048-2057(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.12.019
|
[67] |
SZILÁGYI M. Valency changes of metal ions in the interaction with humic acids [J]. Fuel, 1974, 53(1): 26-28. doi: 10.1016/0016-2361(74)90028-3
|
[68] |
江韬, 魏世强, 李雪梅, 等. 几种胡敏酸还原容量的表征与比较 [J]. 土壤学报, 2012, 49(5): 901-908. doi: 10.11766/trxb201108290323
JIANG T, WEI S Q, LI X M, et al. Characterization of and comparison between reduction capacities of different humic acids [J]. Acta Pedologica Sinica, 2012, 49(5): 901-908(in Chinese). doi: 10.11766/trxb201108290323
|
[69] |
栾富波, 谢丽, 李俊, 等. 腐殖酸的氧化还原行为及其研究进展 [J]. 化学通报, 2008, 71(11): 833-837. doi: 10.14159/j.cnki.0441-3776.2008.11.011
LUAN F B, XIE L, LI J, et al. Redox behavior and research progress of humic acid [J]. Chemistry, 2008, 71(11): 833-837(in Chinese). doi: 10.14159/j.cnki.0441-3776.2008.11.011
|
[70] |
吴云当, 李芳柏, 刘同旭. 土壤微生物—腐殖质—矿物间的胞外电子传递机制研究进展 [J]. 土壤学报, 2016, 53(2): 277-291.
WU Y D, LI F B, LIU T X. Mechanism of extracellular electron transfer among microbe–humus–mineral in soil: A review [J]. Acta Pedologica Sinica, 2016, 53(2): 277-291(in Chinese).
|
[71] |
黄迪, 杨燕群, 肖选虎, 等. 土壤重金属生物有效性评价技术进展[J]. 现代化工, 2019, 39(S1): 89-94, 98.
HUANG D, YANG Y Q, XIAO X H, et al. Technology for measuring bioavailability of heavy metals in soil[J]. Modern Chemical Industry, 2019, 39(Sup 1): 89-94, 98(in Chinese).
|
[72] |
杨洁, 瞿攀, 王金生, 等. 土壤中重金属的生物有效性分析方法及其影响因素综述 [J]. 环境污染与防治, 2017, 39(2): 217-223. doi: 10.15985/j.cnki.1001-3865.2017.02.021
YANG J, QU P, WANG J S, et al. Review on analysis methods of bioavailability of heavy metals in soil and its influence factors [J]. Environmental Pollution & Control, 2017, 39(2): 217-223(in Chinese). doi: 10.15985/j.cnki.1001-3865.2017.02.021
|
[73] |
TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals [J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017
|
[74] |
胡梦淩, 曾和平, 董达诚, 等. 腐殖质改良植物修复重金属污染土壤的研究进展 [J]. 生态与农村环境学报, 2020, 36(3): 273-280. doi: 10.19741/j.issn.1673-4831.2019.0165
HU M L, ZENG H P, DONG D C, et al. Humic substances amendments for improving phytoremediation of heavy metal polluted soils: A review [J]. Journal of Ecology and Rural Environment, 2020, 36(3): 273-280(in Chinese). doi: 10.19741/j.issn.1673-4831.2019.0165
|
[75] |
陕红. 有机物对土壤镉生物有效性的影响及机理[D]. 北京: 中国农业科学院, 2009.
SHAN H. Impact and mechanism of organic amendments on cadmium bioavailability in soils[D]. Beijing: Chinese Academy of Agricultural Sciences, 2009(in Chinese).
|
[76] |
WENG L P, TEMMINGHOFF E J, LOFTS S, et al. Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil [J]. Environmental Science & Technology, 2002, 36(22): 4804-4810.
|
[77] |
余贵芬, 蒋新, 孙磊, 等. 有机物质对土壤镉有效性的影响研究综述 [J]. 生态学报, 2002, 22(5): 770-776. doi: 10.3321/j.issn:1000-0933.2002.05.021
YU G F, JIANG X, SUN L, et al. A review for effect of organic substances on the availability of cadmium in soils [J]. Acta Ecologica Sinica, 2002, 22(5): 770-776(in Chinese). doi: 10.3321/j.issn:1000-0933.2002.05.021
|
[78] |
SHI W Y, SHAO H B, LI H, et al. Co-remediation of the lead-polluted garden soil by exogenous natural zeolite and humic acids [J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 136-140.
|
[79] |
刘玉荣, 党志, 尚爱安. 污染土壤中重金属生物有效性的植物指示法研究 [J]. 环境污染与防治, 2003, 25(4): 215-217,242. doi: 10.3969/j.issn.1001-3865.2003.04.009
LIU Y R, DANG Z, SHANG A A. Study on bioavailability of heavy metals in polluted soil using phytoindicating [J]. Environmental Pollution & Control, 2003, 25(4): 215-217,242(in Chinese). doi: 10.3969/j.issn.1001-3865.2003.04.009
|
[80] |
周卫红, 张静静, 邹萌萌, 等. 土壤重金属有效态含量检测与监测现状、问题及展望 [J]. 中国生态农业学报, 2017, 25(4): 605-615. doi: 10.13930/j.cnki.cjea.160904
ZHOU W H, ZHANG J J, ZOU M M, et al. The detection and monitoring of available heavy metal content in soil: A review [J]. Chinese Journal of Eco-Agriculture, 2017, 25(4): 605-615(in Chinese). doi: 10.13930/j.cnki.cjea.160904
|
[81] |
蔡文昌. 腐殖质对污染土壤重金属赋存形态和玉米生长的影响研究[D]. 昆明: 昆明理工大学, 2018.
CAI W C. Effects of humic substances on heavy metals occurrence mode in contaminated soil and the growth of maize[D]. Kunming: Kunming University of Science and Technology, 2018(in Chinese).
|
[82] |
BANDIERA M, MOSCA G, VAMERALI T. Humic acids affect root characteristics of fodder radish (Raphanus sativus L. var. oleiformis Pers. ) in metal-polluted wastes [J]. Desalination, 2009, 246(1/2/3): 78-91.
|