[1] |
CHEN L F, ZHANG J, ZHU Y X, et al. Interaction of chromium(Ⅲ) or chromium(Ⅵ) with catalase and its effect on the structure and function of catalase: An in vitro study [J]. Food Chemistry, 2018, 244: 378-385. doi: 10.1016/j.foodchem.2017.10.062
|
[2] |
刘炜珍, 郑嘉毅, 吴智诚, 等. 表界面调控晶体变化微观机制探索与铬渣治理研究的结合 [J]. 化学进展, 2017, 29(9): 1053-1061. doi: 10.7536/PC170513
LIU W Z, ZHENG J Y, WU Z C, et al. The application of micro-mechanism of crystal changes under the surface/interface control in treating chromium-containing residues [J]. Progress in Chemistry, 2017, 29(9): 1053-1061(in Chinese). doi: 10.7536/PC170513
|
[3] |
李茹霞, 钟文彬, 谢林华, 等. 金属有机框架材料对Cr(Ⅵ)离子的吸附去除研究进展 [J]. 无机化学学报, 2021, 37(3): 385-400. doi: 10.11862/CJIC.2021.068
LI R X, ZHONG W B, XIE L H, et al. Recent advances in adsorptive removal of Cr(Ⅵ) ions by metal-organic frameworks [J]. Chinese Journal of Inorganic Chemistry, 2021, 37(3): 385-400(in Chinese). doi: 10.11862/CJIC.2021.068
|
[4] |
GRACEPAVITHRA K, JAIKUMAR V, KUMAR P S, et al. A review on cleaner strategies for chromium industrial wastewater: present research and future perspective [J]. Journal of Cleaner Production, 2019, 228: 580-593. doi: 10.1016/j.jclepro.2019.04.117
|
[5] |
GB8978—1996. 中华人民共和国污水综合排放标准[S].
GB8978—1996. Integrated wastewater discharge standard[S].
|
[6] |
RAJAPAKSHA A U, ALAM M S, CHEN N, et al. Removal of hexavalent chromium in aqueous solutions using biochar: chemical and spectroscopic investigations [J]. Science of the Total Environment, 2018, 625: 1567-1573. doi: 10.1016/j.scitotenv.2017.12.195
|
[7] |
AKRAM M, BHATTI H N, IQBAL M, et al. Biocomposite efficiency for Cr(Ⅵ) adsorption: kinetic, equilibrium and thermodynamics studies [J]. Journal of Environmental Chemical Engineering, 2017, 5(1): 400-411. doi: 10.1016/j.jece.2016.12.002
|
[8] |
ZHAO D L, GAO X, WU C N, et al. Facile preparation of amino functionalized graphene oxide decorated with Fe3O4 nanoparticles for the adsorption of Cr(Ⅵ) [J]. Applied Surface Science, 2016, 384: 1-9. doi: 10.1016/j.apsusc.2016.05.022
|
[9] |
HABIBA U, AFIFI A M, SALLEH A, et al. Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+ [J]. Journal of Hazardous Materials, 2017, 322: 182-194. doi: 10.1016/j.jhazmat.2016.06.028
|
[10] |
席改红, 石国荣, 李强, 等. 木本泥炭对Cr(Ⅵ)的吸附性能 [J]. 环境化学, 2019, 38(1): 202-208. doi: 10.7524/j.issn.0254-6108.2018082304
XI G H, SHI G R, LI Q, et al. Adsorption performance of woody peat for Cr(Ⅵ) [J]. Environmental Chemistry, 2019, 38(1): 202-208(in Chinese). doi: 10.7524/j.issn.0254-6108.2018082304
|
[11] |
XIE B H, SHAN C, XU Z, et al. One-step removal of Cr(Ⅵ) at alkaline pH by UV/sulfite process: reduction to Cr(Ⅲ) and in situ Cr(Ⅲ) precipitation [J]. Chemical Engineering Journal, 2017, 308: 791-797. doi: 10.1016/j.cej.2016.09.123
|
[12] |
ZOU Y D, WANG X X, KHAN A, et al. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review [J]. Environmental Science & Technology, 2016, 50(14): 7290-7304.
|
[13] |
MEENA A H, ARAI Y. Effects of common groundwater ions on chromate removal by magnetite: importance of chromate adsorption [J]. Geochemical Transactions, 2016, 17: 1. doi: 10.1186/s12932-016-0033-9
|
[14] |
ZHOU R, LIU F Y, WEI N, et al. Comparison of Cr(Ⅵ) removal by direct and pulse current electrocoagulation: implications for energy consumption optimization, sludge reduction and floc magnetism [J]. Journal of Water Process Engineering, 2020, 37: 101387. doi: 10.1016/j.jwpe.2020.101387
|
[15] |
BIANCHI E, BIANCALANI A, BERARDI C, et al. Improving the efficiency of wastewater treatment plants: bio-removal of heavy-metals and pharmaceuticals by azolla filiculoides and lemna minuta [J]. Science of the Total Environment, 2020, 746: 141219. doi: 10.1016/j.scitotenv.2020.141219
|
[16] |
WANG H, YUAN X Z, WU Y, et al. Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(Ⅵ) reduction [J]. Journal of Hazardous Materials, 2015, 286: 187-194. doi: 10.1016/j.jhazmat.2014.11.039
|
[17] |
KHARISOV B I, DIAS H V R, KHARISSOVA O V. Mini-review: ferrite nanoparticles in the catalysis [J]. Arabian Journal of Chemistry, 2019, 12(7): 1234-1246. doi: 10.1016/j.arabjc.2014.10.049
|
[18] |
高卫国, 钱林波, 韩璐, 等. 锰铁氧体吸附及催化柠檬酸还原六价铬的过程及机理 [J]. 环境化学, 2018, 37(7): 1525-1533. doi: 10.7524/j.issn.0254-6108.2017101302
GAO W G, QIAN L B, HAN L, et al. Iron manganese minerals catalyzed Cr(Ⅵ) reduction by citric acid and its mechanism [J]. Environmental Chemistry, 2018, 37(7): 1525-1533(in Chinese). doi: 10.7524/j.issn.0254-6108.2017101302
|
[19] |
ROCA A G, COSTO R, REBOLLEDO A F, et al. Progress in the preparation of magnetic nanoparticles for applications in biomedicine [J]. Journal of Physics D:Applied Physics, 2009, 42(22): 224002. doi: 10.1088/0022-3727/42/22/224002
|
[20] |
PRAVEENA K, CHEN H W, LIU H L, et al. Enhanced magnetic domain relaxation frequency and low power losses in Zn2+ substituted manganese ferrites potential for high frequency applications [J]. Journal of Magnetism and Magnetic Materials, 2016, 420: 129-142. doi: 10.1016/j.jmmm.2016.07.011
|
[21] |
BINDU K, SRIDHARAN K, AJITH K M, et al. Microwave assisted growth of stannous ferrite microcubes as electrodes for potentiometric nonenzymatic H2O2 sensor and supercapacitor applications [J]. Electrochimica Acta, 2016, 217: 139-149. doi: 10.1016/j.electacta.2016.09.083
|
[22] |
LIANG P L, YUAN L Y, DENG H, et al. Photocatalytic reduction of uranium(Ⅵ) by magnetic ZnFe2O4 under visible light [J]. Applied Catalysis B:Environmental, 2020, 267: 118688. doi: 10.1016/j.apcatb.2020.118688
|
[23] |
KEFENI K K, MSAGATI T A M, MAMBA B B. Ferrite nanoparticles: synthesis, characterisation and applications in electronic device [J]. Materials Science and Engineering:B, 2017, 215: 37-55. doi: 10.1016/j.mseb.2016.11.002
|
[24] |
CHEN B, ZHAO X S, LIU Y, et al. Highly stable and covalently functionalized magnetic nanoparticles by polyethyleneimine for Cr(Ⅵ) adsorption in aqueous solution [J]. RSC Advances, 2015, 5(2): 1398-1405. doi: 10.1039/C4RA10602D
|
[25] |
秦艳敏, 王敦球, 梁美娜, 等. 桑树杆活性炭/铁锰氧化物复合吸附剂的制备及其对Cr(Ⅵ)的吸附 [J]. 环境化学, 2016, 35(4): 783-792. doi: 10.7524/j.issn.0254-6108.2016.04.2015101902
QIN Y M, WANG D Q, LIANG M N, et al. Preparation of mulberry stem activated carbon/Fe-Mn oxide composite sorbent and its effects on the adsorption of Cr(Ⅵ) [J]. Environmental Chemistry, 2016, 35(4): 783-792(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.04.2015101902
|
[26] |
OWLAD M, AROUA M K, DAUD W A W, et al. Removal of hexavalent chromium-contaminated water and wastewater: a review [J]. Water, Air, and Soil Pollution, 2009, 200(1-4): 59-77. doi: 10.1007/s11270-008-9893-7
|
[27] |
REDDY D H K, YUN Y S. Spinel ferrite magnetic adsorbents: alternative future materials for water purification [J]. Coordination Chemistry Reviews, 2016, 315: 90-111. doi: 10.1016/j.ccr.2016.01.012
|
[28] |
NASRALLAH N, KEBIR M, KOUDRI Z, et al. Photocatalytic reduction of Cr(Ⅵ) on the novel hetero-system CuFe2O4/CdS [J]. Journal of Hazardous Materials, 2011, 185(2): 1398-1404.
|
[29] |
JOVANOVIĆC S, KUMRIĆC K, BAJUK-BOGDANOVIĆC D, et al. Cobalt ferrite nanospheres as a potential magnetic adsorbent for chromium(Ⅵ) ions [J]. Journal of Nanoscience and Nanotechnology, 2019, 19(8): 5027-5034. doi: 10.1166/jnn.2019.16803
|
[30] |
BHOWMIK K L, DEBNATH A, NATH R K, et al. Synthesis of MnFe2O4 and Mn3O4 magnetic nano-composites with enhanced properties for adsorption of Cr(Ⅵ): artificial neural network modeling [J]. Water Science and Technology, 2017, 76(11): 3368-3378.
|
[31] |
LI N, FU F L, LU J W, et al. Facile preparation of magnetic mesoporous MnFe2O4@SiO2−CTAB composites for Cr(Ⅵ) adsorption and reduction [J]. Environmental Pollution, 2017, 220: 1376-1385. doi: 10.1016/j.envpol.2016.10.097
|
[32] |
WANG W, CAI K, WU X F, et al. A novel poly(m-phenylenediamine)/reduced graphene oxide/nickel ferrite magnetic adsorbent with excellent removal ability of dyes and Cr(Ⅵ) [J]. Journal of Alloys and Compounds, 2017, 722: 532-543. doi: 10.1016/j.jallcom.2017.06.069
|
[33] |
AHMADI A, FOROUTAN R, ESMAEILI H, et al. The role of bentonite clay and bentonite clay@MnFe2O4 composite and their physico-chemical properties on the removal of Cr(Ⅲ) and Cr(Ⅵ) from aqueous media [J]. Environmental Science and Pollution Research International, 2020, 27(12): 14044-14057. doi: 10.1007/s11356-020-07756-x
|
[34] |
VERMA B, BALOMAJUMDER C. Magnetic magnesium ferrite-doped multi-walled carbon nanotubes: an advanced treatment of chromium-containing wastewater [J]. Environmental Science and Pollution Research International, 2020, 27(12): 13844-13854. doi: 10.1007/s11356-020-07988-x
|
[35] |
FOROUTAN R, MOHAMMADI R, RAMAVANDI B, et al. Removal characteristics of chromium by activated carbon/CoFe2O4 magnetic composite and Phoenix dactylifera stone carbon [J]. Korean Journal of Chemical Engineering, 2018, 35(11): 2207-2219. doi: 10.1007/s11814-018-0145-2
|
[36] |
VERMA B, BALOMAJUMDER C. Fabrication of magnetic cobalt ferrite nanocomposites: an advanced method of removal of toxic dichromate ions from electroplating wastewater [J]. Korean Journal of Chemical Engineering, 2020, 37(7): 1157-1165. doi: 10.1007/s11814-020-0516-3
|
[37] |
VERMA B, BALOMAJUMDER C. Synthesis of magnetic nickel ferrites nanocomposites: an advanced remediation of electroplating wastewater [J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 112: 106-115. doi: 10.1016/j.jtice.2020.07.006
|
[38] |
DU Y C, WANG X K, WU J S, et al. Mg3Si4O10(OH)2 and MgFe2O4 in situ grown on diatomite: highly efficient adsorbents for the removal of Cr(Ⅵ) [J]. Microporous and Mesoporous Materials, 2018, 271: 83-91. doi: 10.1016/j.micromeso.2018.04.036
|
[39] |
SAMUEL M S, SHAH S S, SUBRAMANIYAN V, et al. Preparation of graphene oxide/chitosan/ferrite nanocomposite for chromium(Ⅵ) removal from aqueous solution [J]. International Journal of Biological Macromolecules, 2018, 119: 540-547. doi: 10.1016/j.ijbiomac.2018.07.052
|
[40] |
WANG X, LIANG Y H, AN W J, et al. Removal of chromium (Ⅵ) by a self-regenerating and metal free g-C3N4/graphene hydrogel system via the synergy of adsorption and photo-catalysis under visible light [J]. Applied Catalysis B:Environmental, 2017, 219: 53-62. doi: 10.1016/j.apcatb.2017.07.008
|
[41] |
王洪红, 雷文, 李孝建, 等. 催化还原降解Cr(Ⅵ) [J]. 化学进展, 2020, 32(12): 1990-2003.
WANG H H, LEI W, LI X J, et al. Catalytic reductive degradation of Cr(Ⅵ) [J]. Progress in Chemistry, 2020, 32(12): 1990-2003(in Chinese).
|
[42] |
YUAN G Q, LI F L, LI K Z, et al. Research progress on photocatalytic reduction of Cr(Ⅵ) in polluted water [J]. Bulletin of the Chemical Society of Japan, 2021, 94(4): 1142-1155. doi: 10.1246/bcsj.20200317
|
[43] |
FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37-38. doi: 10.1038/238037a0
|
[44] |
CHONG M N, JIN B, CHOW C W K, et al. Recent developments in photocatalytic water treatment technology: a review [J]. Water Research, 2010, 44(10): 2997-3027. doi: 10.1016/j.watres.2010.02.039
|
[45] |
TONG H, OUYANG S X, BI Y P, et al. Nano-photocatalytic materials: possibilities and challenges [J]. Advanced Materials, 2012, 24(2): 229-251. doi: 10.1002/adma.201102752
|
[46] |
YUAN R R, YUE C L, QIU J L, et al. Highly efficient sunlight-driven reduction of Cr(Ⅵ) by TiO2@NH2-MIL-88B(Fe) heterostructures under neutral conditions [J]. Applied Catalysis B:Environmental, 2019, 251: 229-239. doi: 10.1016/j.apcatb.2019.03.068
|
[47] |
WANG C C, DU X D, LI J, et al. Photocatalytic Cr(Ⅵ) reduction in metal-organic frameworks: a mini-review [J]. Applied Catalysis B:Environmental, 2016, 193: 198-216. doi: 10.1016/j.apcatb.2016.04.030
|
[48] |
BARRERA C E, LUGO-LUGO V, BILYEU B. A review of chemical, electrochemical and biological methods for aqueous Cr(Ⅵ) reduction [J]. Journal of Hazardous Materials, 2012, 223: 1-12.
|
[49] |
BARAKAT M A. New trends in removing heavy metals from industrial wastewater [J]. Arabian Journal of Chemistry, 2011, 4(4): 361-377. doi: 10.1016/j.arabjc.2010.07.019
|
[50] |
FUJISHIMA A, ZHANG X T, TRYK D A. TiO2 photocatalysis and related surface phenomena [J]. Surface Science Reports, 2008, 63(12): 515-582. doi: 10.1016/j.surfrep.2008.10.001
|
[51] |
SHI L, WANG T, ZHANG H B, et al. An amine-functionalized iron(Ⅲ) metal-organic framework as efficient visible-light photocatalyst for Cr(Ⅵ) reduction [J]. Advanced Science, 2015, 2(3): 1500006. doi: 10.1002/advs.201500006
|
[52] |
HISATOMI T, KUBOTA J, DOMEN K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting [J]. Chemical Society Reviews, 2014, 43(22): 7520-7535. doi: 10.1039/C3CS60378D
|
[53] |
WEI Y C, WU X X, ZHAO Y L, et al. Efficient photocatalysts of TiO2 nanocrystals-supported PtRu alloy nanoparticles for CO2 reduction with H2O: synergistic effect of Pt-Ru [J]. Applied Catalysis B:Environmental, 2018, 236: 445-457. doi: 10.1016/j.apcatb.2018.05.043
|
[54] |
LI C Q,. SUN Z M, SONG A K, et al. Flowing nitrogen atmosphere induced rich oxygen vacancies overspread the surface of TiO2/kaolinite composite for enhanced photocatalytic activity within broad radiation spectrum [J]. Applied Catalysis B:Environmental, 2018, 236: 76-87. doi: 10.1016/j.apcatb.2018.04.083
|
[55] |
MAHMOOD M, YOUSUF M A, BAIG M M, et al. Spinel ferrite magnetic nanostructures at the surface of graphene sheets for visible light photocatalysis applications [J]. Physica B:Condensed Matter, 2018, 550: 317-323. doi: 10.1016/j.physb.2018.08.043
|
[56] |
SONU, DUTTA V, SHARMA S, et al. Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water [J]. Journal of Saudi Chemical Society, 2019, 23(8): 1119-1136. doi: 10.1016/j.jscs.2019.07.003
|
[57] |
ISLAM J B, ISLAM M R, FURUKAWA M, et al. Performance of EDTA modified magnetic ZnFe2O4 during photocatalytic reduction of Cr(Ⅵ) in aqueous solution under UV irradiation [J]. Journal of Environmental Science and Health Part A, 2021, 56(1): 44-51. doi: 10.1080/10934529.2020.1835389
|
[58] |
IBRAHIM I, KALTZOGLOU A, ATHANASEKOU C, et al. Magnetically separable TiO2/CoFe2O4/Ag nanocomposites for the photocatalytic reduction of hexavalent chromium pollutant under UV and artificial solar light [J]. Chemical Engineering Journal, 2020, 381: 122730. doi: 10.1016/j.cej.2019.122730
|
[59] |
SURESH R, RAJENDRAN S, KUMAR P S, et al. Recent advancements of spinel ferrite based binary nanocomposite photocatalysts in wastewater treatment [J]. Chemosphere, 2021, 274: 129734. doi: 10.1016/j.chemosphere.2021.129734
|
[60] |
OTHMAN ALI I, MOSTAFA A G. Photocatalytic reduction of chromate oxyanions on MMnFe2O4 (M=Zn, Cd) nanoparticles [J]. Materials Science in Semiconductor Processing, 2015, 33: 189-198. doi: 10.1016/j.mssp.2015.01.030
|
[61] |
WANG M, ZHANG Y L, DONG C J, et al. Preparation and electromagnetic shielding effectiveness of cobalt ferrite nanoparticles/carbon nanotubes composites [J]. Nanomaterials and Nanotechnology, 2019, 9: 1-7.
|
[62] |
ZHANG S W, LI J X, ZENG M Y, et al. In situ synthesis of water-soluble magnetic graphitic carbon nitride photocatalyst and its synergistic catalytic performance [J]. ACS Applied Materials & Interfaces, 2013, 5(23): 12735-12743.
|
[63] |
NIU M, CAO D P, SUI K Y, et al. InP/TiO2 heterojunction for photoelectrochemical water splitting under visible-light [J]. International Journal of Hydrogen Energy, 2020, 45(20): 11615-11624. doi: 10.1016/j.ijhydene.2020.02.094
|
[64] |
VOZNYY O, SUTHERLAND B R, IP A H, et al. Engineering charge transport by heterostructuring solution-processed semiconductors [J]. Nature Reviews Materials, 2017, 2: 17026. doi: 10.1038/natrevmats.2017.26
|
[65] |
XU B, DING T, ZHANG Y C, et al. A new efficient visible-light-driven composite photocatalyst comprising ZnFe2O4 nanoparticles and conjugated polymer from the dehydrochlorination of polyvinyl chloride [J]. Materials Letters, 2017, 187: 123-125. doi: 10.1016/j.matlet.2016.10.094
|
[66] |
OJEMAYE M O, OKOH O O, OKOH A I. Performance of NiFe2O4-SiO2-TiO2 magnetic photocatalyst for the effective photocatalytic reduction of Cr(Ⅵ) in aqueous solutions [J]. Journal of Nanomaterials, 2017, 2017: 5264910.
|
[67] |
CHENG C, CHEN D Y, LI N J, et al. ZnIn2S4 grown on nitrogen-doped hollow carbon spheres: an advanced catalyst for Cr(Ⅵ) reduction [J]. Journal of Hazardous Materials, 2020, 391: 122205. doi: 10.1016/j.jhazmat.2020.122205
|
[68] |
PAN J W, GUAN Z J, YANG J J, et al. Facile fabrication of ZnIn2S4/SnS2 3D heterostructure for efficient visible-light photocatalytic reduction of Cr(Ⅵ) [J]. Chinese Journal of Catalysis, 2020, 41(1): 200-208. doi: 10.1016/S1872-2067(19)63422-4
|
[69] |
QIU J H, LI M, XU J, et al. Bismuth sulfide bridged hierarchical Bi2S3/BiOCl@ZnIn2S4 for efficient photocatalytic Cr(Ⅵ) reduction [J]. Journal of Hazardous Materials, 2020, 389: 121858. doi: 10.1016/j.jhazmat.2019.121858
|
[70] |
ZHANG G P, CHEN D Y, LI N J, et al. Preparation of ZnIn2S4 nanosheet-coated CdS nanorod heterostructures for efficient photocatalytic reduction of Cr(Ⅵ) [J]. Applied Catalysis B:Environmental, 2018, 232: 164-174. doi: 10.1016/j.apcatb.2018.03.017
|
[71] |
SHEN X F, ZHENG T, YANG J Y, et al. Removal of Cr(Ⅵ) from acid wastewater by BC/ZnFe2O4 magnetic nanocomposite via the synergy of absorption-photocatalysis [J]. ChemCatChem, 2020, 12(16): 4121-4131. doi: 10.1002/cctc.202000619
|
[72] |
THOMAS B, ALEXANDER L K. Enhanced synergetic effect of Cr(Ⅵ) ion removal and anionic dye degradation with superparamagnetic cobalt ferrite meso-macroporous nanospheres [J]. Applied Nanoscience, 2018, 8(1): 125-135.
|
[73] |
PATNAIK S, DAS K K, MOHANTY A, et al. Enhanced photo catalytic reduction of Cr (Ⅵ) over polymer-sensitized g-C3N4/ZnFe2O4 and its synergism with phenol oxidation under visible light irradiation [J]. Catalysis Today, 2018, 315: 52-66. doi: 10.1016/j.cattod.2018.04.008
|
[74] |
EMADIAN S S, GHORBANI M, BAKERI G. Magnetically separable CoFe2O4/ZrO2 nanocomposite for the photocatalytic reduction of hexavalent chromium under visible light irradiation [J]. Synthetic Metals, 2020, 267: 116470. doi: 10.1016/j.synthmet.2020.116470
|
[75] |
HE F, LU Z Y, SONG M S, et al. Construction of ion imprinted layer modified ZnFe2O4 for selective Cr(Ⅵ) reduction with simultaneous organic pollutants degradation based on different reaction channels [J]. Applied Surface Science, 2019, 483: 453-462. doi: 10.1016/j.apsusc.2019.03.311
|
[76] |
SKLIRI E, VAMVASAKIS I, PAPADAS I T, et al. Mesoporous composite networks of linked MnFe2O4 and ZnFe2O4 nanoparticles as efficient photocatalysts for the reduction of Cr(Ⅵ) [J]. Catalysts, 2021, 11(2): 199. doi: 10.3390/catal11020199
|
[77] |
BEHERA A, KANDI D, MAJHI S M, et al. Facile synthesis of ZnFe2O4 photocatalysts for decolourization of organic dyes under solar irradiation [J]. Beilstein Journal of Nanotechnology, 2018, 9: 436-446. doi: 10.3762/bjnano.9.42
|
[78] |
OLADOJA N A, ANTHONY E T, OLOLADE I A, et al. Self-propagation combustion method for the synthesis of solar active nano ferrite for Cr(Ⅵ) reduction in aqua system [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2018, 353: 229-239. doi: 10.1016/j.jphotochem.2017.11.026
|
[79] |
ANTHONY E T, LAWAL I A, BANKOLE M O, et al. Solar active heterojunction of p-CaFe2O4/n-ZnO for photoredox reactions [J]. Environmental Technology & Innovation, 2020, 20: 101060.
|
[80] |
YANG M Q, ZHANG N, XU Y J. Synthesis of fullerene carbon nanotube and graphene-TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study [J]. ACS Applied Materials & Interfaces, 2013, 5(3): 1156-1164.
|
[81] |
BEHERA A, MANSINGH S, DAS K K, et al. Synergistic ZnFe2O4-carbon allotropes nanocomposite photocatalyst for norfloxacin degradation and Cr(Ⅵ) reduction [J]. Journal of Colloid and Interface Science, 2019, 544: 96-111. doi: 10.1016/j.jcis.2019.02.056
|
[82] |
SUN S H, ZENG H, ROBINSON D B, et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles [J]. Journal of the American Chemical Society, 2004, 126(1): 273-279. doi: 10.1021/ja0380852
|
[83] |
SUN M, ZHANG G, QIN Y H, et al. Redox conversion of chromium(Ⅵ) and arsenic(Ⅲ) with the intermediates of chromium(Ⅴ) and arsenic(Ⅳ) via AuPd/CNTs electrocatalysis in acid aqueous solution [J]. Environmental Science & Technology, 2015, 49(15): 9289-9297.
|
[84] |
LUO T, WANG S F, HOU X H, et al. Cr-Zn redox battery with NiFe2O4 as catalyst for enhanced degradation of Cr(Ⅵ) pollution [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 111-116.
|
[85] |
XUE C, MAO Y P, WANG W L, et al. Current status of applying microwave-associated catalysis for the degradation of organics in aqueous phase a review [J]. Journal of Environmental Sciences, 2019, 81: 119-135. doi: 10.1016/j.jes.2019.01.019
|
[86] |
WEI R, WANG P, ZHANG G S, et al. Microwave-responsive catalysts for wastewater treatment: a review [J]. Chemical Engineering Journal, 2020, 382: 122781. doi: 10.1016/j.cej.2019.122781
|
[87] |
WANG L X, GUAN Y K, QIU X, et al. Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal organic framework [J]. Chemical Engineering Journal, 2017, 326: 945-955. doi: 10.1016/j.cej.2017.06.006
|
[88] |
QUAN X, ZHANG Y B, CHEN S, et al. Generation of hydroxyl radical in aqueous solution by microwave energy using activated carbon as catalyst and its potential in removal of persistent organic substances [J]. Journal of Molecular Catalysis A:Chemical, 2007, 263(1): 216-222.
|
[89] |
HE J, LIU S, DENG L W, et al. Tunable electromagnetic and enhanced microwave absorption properties in CoFe2O4 decorated Ti3C2 MXene composites [J]. Applied Surface Science, 2020, 504: 144210. doi: 10.1016/j.apsusc.2019.144210
|
[90] |
YOSHIKAWA N, XIE G Q, CAO Z P, et al. Microstructure of selectively heated (hot spot) region in Fe3O4 powder compacts by microwave irradiation [J]. Journal of the European Ceramic Society, 2012, 32(2): 419-424. doi: 10.1016/j.jeurceramsoc.2011.08.028
|
[91] |
POLAERT I, BASTIEN S, LEGRAS B, et al. Dielectric and magnetic properties of NiFe2O4 at 2.45 GHz and heating capacity for potential uses under microwaves [J]. Journal of Magnetism and Magnetic Materials, 2015, 374: 731-739. doi: 10.1016/j.jmmm.2014.09.027
|
[92] |
TSAY C Y, LIANG S C, LEI C M, et al. A comparative study of the magnetic and microwave properties of Al3+ and In3+ substituted Mg-Mn ferrites [J]. Ceramics International, 2016, 42(4): 4748-4753. doi: 10.1016/j.ceramint.2015.11.154
|
[93] |
GAO J, YANG S G, LI N, et al. Rapid degradation of azo dye direct black BN by magnetic MgFe2O4-SiC under microwave radiation [J]. Applied Surface Science, 2016, 379: 140-149. doi: 10.1016/j.apsusc.2016.04.041
|
[94] |
ZHANG L, LIU X Y, GUO X J, et al. Investigation on the degradation of brilliant green induced oxidation by NiFe2O4 under microwave irradiation [J]. Chemical Engineering Journal, 2011, 173(3): 737-742. doi: 10.1016/j.cej.2011.08.041
|
[95] |
PANG Y X, KONG L J, CHEN D Y, et al. Rapid Cr(Ⅵ) reduction in aqueous solution using a novel microwave-based treatment with MoS2-MnFe2O4 composite [J]. Applied Surface Science, 2019, 471: 408-416. doi: 10.1016/j.apsusc.2018.11.180
|
[96] |
ZHU C Q, LIU F Q, SONG L, et al. Magnetic Fe3O4@polyaniline nanocomposites with a tunable core–shell structure for ultrafast microwave-energy-driven reduction of Cr(Ⅵ) [J]. Environmental Science:Nano, 2018, 5(2): 487-496. doi: 10.1039/C7EN01075C
|
[97] |
HORIKOSHI S, SERPONE N. On the influence of the microwaves thermal and non-thermal effects in titania photoassisted reactions [J]. Catalysis Today, 2014, 224: 225-235. doi: 10.1016/j.cattod.2013.10.056
|
[98] |
LIU X Y, AN S, SHI W, et al. Microwave-induced catalytic oxidation of malachite green under magnetic Cu-ferrites: new insight into the degradation mechanism and pathway [J]. Journal of Molecular Catalysis A:Chemical, 2014, 395: 243-250. doi: 10.1016/j.molcata.2014.08.028
|
[99] |
SHEN M L, FU L, TANG J H, et al. Microwave hydrothermal-assisted preparation of novel spinel-NiFe2O4/natural mineral composites as microwave catalysts for degradation of aquatic organic pollutants [J]. Journal of Hazardous Materials, 2018, 350: 1-9. doi: 10.1016/j.jhazmat.2018.02.014
|
[100] |
刘金燕, 刘立华, 薛建荣, 等. 重金属废水吸附处理的研究进展 [J]. 环境化学, 2018, 37(9): 2016-2024. doi: 10.7524/j.issn.0254-6108.2017110105
LIU J Y, LIU L H, XUE J R, et al. Research progress on treatment of heavy metal wastewater by adsorption [J]. Environmental Chemistry, 2018, 37(9): 2016-2024(in Chinese). doi: 10.7524/j.issn.0254-6108.2017110105
|
[101] |
鲍家泽, 马玉银, 赵伟荣, 等. 基于铬物料资源化利用的制革含铬废水处理技术现状及对策建议 [J]. 广东化工, 2018, 45(11): 187-188. doi: 10.3969/j.issn.1007-1865.2018.11.085
BAO J Z, MA Y Y, ZHAO W R, et al. Status and countermeasures of chrome wastewater treatment technology based on resource utilization of chromium material [J]. Guangdong Chemical Industry, 2018, 45(11): 187-188(in Chinese). doi: 10.3969/j.issn.1007-1865.2018.11.085
|
[102] |
吕斌, 聂军凯, 高党鸽, 等. 控制制革含铬废水污染技术的研究进展 [J]. 中国皮革, 2017, 46(10): 13-20. doi: 10.13536/j.cnki.issn1001-6813.2017-010-003
LV B, NIE J K, GAO D G, et al. Research progress on tannery pollution control of chromium-containing wastewater [J]. China Leather, 2017, 46(10): 13-20(in Chinese). doi: 10.13536/j.cnki.issn1001-6813.2017-010-003
|
[103] |
COETZEE J J, BANSAL N, CHIRWA E M N. Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation [J]. Exposure and Health, 2020, 12(1): 51-62. doi: 10.1007/s12403-018-0284-z
|