[1] 姚冠荣, 高全洲. 河流碳输移与陆地侵蚀-沉积过程关系的研究进展 [J]. 水科学进展, 2007, 18(1): 133-139. doi: 10.3321/j.issn:1001-6791.2007.01.022 YAO G R, GAO Q Z. Correlation between riverine carbon transport and terrestrial erosion-deposition processes [J]. Advances in Water Science, 2007, 18(1): 133-139(in Chinese). doi: 10.3321/j.issn:1001-6791.2007.01.022
[2] 刘朋雨, 张连凯, 黄奇波, 等. 外源水和外源酸对万华岩地下河系统岩溶碳汇效应的影响 [J]. 中国岩溶, 2020, 39(1): 17-23. LIU P Y, ZHANG L K, HUANG Q B, et al. Effect of exogenous water and acid on Karst carbon sink in the Wanhuayan underground river system [J]. Carsologica Sinica, 2020, 39(1): 17-23(in Chinese).
[3] 刘再华, Wolfgang Dreybrodt, 王海静. 一种由全球水循环产生的可能重要的CO2汇 [J]. 科学通报, 2007, 52(20): 2418-2422. doi: 10.3321/j.issn:0023-074x.2007.20.013 LIU Z H, WOLFGANG D, WANG H J. A potentially important CO2 sink generated by the global water cycle [J]. Chinese Science Bulletin, 2007, 52(20): 2418-2422(in Chinese). doi: 10.3321/j.issn:0023-074x.2007.20.013
[4] SCHIMEL D S, HOUSE J I, HIBBARD K A, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems [J]. Nature, 2001, 414(6860): 169-172. doi: 10.1038/35102500
[5] SPENCE J, TELMER K. The role of sulfur in chemical weathering and atmospheric CO2 fluxes: Evidence from major ions, δ13CDIC, and δ34SSO4 in rivers of the Canadian Cordillera [J]. Geochimica et Cosmochimica Acta, 2005, 69(23): 5441-5458. doi: 10.1016/j.gca.2005.07.011
[6] 袁道先. 地球系统的碳循环和资源环境效应 [J]. 第四纪研究, 2001, 21(3): 223-232. doi: 10.3321/j.issn:1001-7410.2001.03.004 YUAN D X. Carbon cycle in earth system and its effects on environment and resources [J]. Quaternary Sciences, 2001, 21(3): 223-232(in Chinese). doi: 10.3321/j.issn:1001-7410.2001.03.004
[7] 李军, 刘丛强, 李龙波, 等. 硫酸侵蚀碳酸盐岩对长江河水DIC循环的影响 [J]. 地球化学, 2010, 39(4): 305-313. doi: 10.19700/j.0379-1726.2010.04.002 LI J, LIU C Q, LI L B, et al. The impacts of chemical weathering of carbonate rock by sulfuric acid on the cycling of dissolved inorganic carbon in Changjiang River water [J]. Geochimica, 2010, 39(4): 305-313(in Chinese). doi: 10.19700/j.0379-1726.2010.04.002
[8] 汪炎林, 周忠发, 田衷珲, 等. 池武溪流域岩溶水SO42-的空间变化特征及其来源分析 [J]. 环境化学, 2017, 36(12): 2690-2700. doi: 10.7524/j.issn.0254-6108.2017030105 WANG Y L, ZHOU Z F, TIAN Z H, et al. Analysis of the spatial variation and sources of SO42- in Karst water of Chiwu River [J]. Environmental Chemistry, 2017, 36(12): 2690-2700(in Chinese). doi: 10.7524/j.issn.0254-6108.2017030105
[9] LUDWIG W, PROBST J L, KEMPE S. Predicting the oceanic input of organic carbon by continental erosion [J]. Global Biogeochemical Cycles, 1996, 10(1): 23-41. doi: 10.1029/95GB02925
[10] PU J B, YUAN D X, ZHANG C, et al. Hydrogeochemistry and possible sulfate sources in Karst groundwater in Chongqing, China [J]. Environmental Earth Sciences, 2013, 68(1): 159-168. doi: 10.1007/s12665-012-1726-8
[11] YIN C, YANG H Q, WANG J F, et al. Combined use of stable nitrogen and oxygen isotopes to constrain the nitrate sources in a karst lake [J]. Agriculture, Ecosystems & Environment, 2020, 303: 107089.
[12] WANG S Q, ZHENG W B, CURRELL M, et al. Relationship between land-use and sources and fate of nitrate in groundwater in a typical recharge area of the North China Plain [J]. Science of the Total Environment, 2017, 609: 607-620. doi: 10.1016/j.scitotenv.2017.07.176
[13] LIU Z H. Review on the role of terrestrial aquatic photosynthesis in the global carbon cycle [J]. Procedia Earth and Planetary Science, 2013, 7: 513-516. doi: 10.1016/j.proeps.2013.03.003
[14] 曹建华, 王福星, 黄俊发, 等. 桂林地区石灰岩表面生物岩溶溶蚀作用研究 [J]. 中国岩溶, 1993, 12(1): 11-22. CAO J H, WANG F X, HUANG J F, et al. The erosion action of biokarst on limestone in Guilin area [J]. Carsologica Sinica, 1993, 12(1): 11-22(in Chinese).
[15] 陈波, 陈文瑾, 陆苹茹, 等. 基于CCM机制的水生碳泵效应协同富营养化缓解研究进展[J]. 贵州师范大学学报(自然科学版), 2022, 40(2): 19-26. CHEN B, CHEN W J, LU P R, et al. Research progress of aquatic carbon pump effect synergistic eutrophication mitigation based on CCM mechanism[J]. Journal of Guizhou Normal University(Natural Science Edition), 2022, 40(2): 19-26(in Chinese).
[16] 张远瞩. 外源酸(硫酸、硝酸)对岩溶碳循环的影响: 以重庆南山老龙洞地下河流域为例[D]. 重庆: 西南大学, 2017. ZHANG Y Z. Effects of allogenic acids(sulfuric acid and nitric acid)on karst carbon cycle—A study from Laolongdong subterranean catchment, Chongqing[D]. Chongqing: Southwest University, 2017(in Chinese).
[17] 任梦梦. 漓江流域外源酸(硝酸、硫酸)对岩溶碳汇的影响研究[D]. 北京: 中国地质大学(北京), 2020. REN M M. Effects of exogenous acids (nitric acid, furic acid) on karst carbon sink in Lijiang River Basin [D]. Beijing: China University of Geosciences (Beijing), 2020(in Chinese).
[18] 孙平安, 于奭, 莫付珍, 等. 不同地质背景下河流水化学特征及影响因素研究: 以广西大溶江、灵渠流域为例 [J]. 环境科学, 2016, 37(1): 123-131. SUN P A, YU S, MO F Z, et al. Hydrochemical characteristics and influencing factors in different geological background: A case study in darongjiang and Lingqu basin, Guangxi, China [J]. Environmental Science, 2016, 37(1): 123-131(in Chinese).
[19] 孙平安. 漓江流域无机碳和有机碳来源及岩溶碳循环过程[D]. 武汉: 中国地质大学, 2021. SUN P A. Sources of inorganic and organic carbon and karst carbon cycle in Lijiang River Basin[D]. Wuhan: China University of Geosciences, 2021(in Chinese).
[20] 谢银财, 朱同彬, 杨慧, 等. 硫酸对典型岩溶流域碳酸盐岩溶蚀及碳循环意义: 以广西平果岩溶流域为例 [J]. 第四纪研究, 2017, 37(6): 1271-1282. doi: 10.11928/j.issn.1001-7410.2017.06.11 XIE Y C, ZHU T B, YANG H, et al. Chemical weathering of carbonate rocks by sulfuric acid in typical karst catchment and its implication for carbon cycle: A case study in karst catchment in Pingguo, Guangxi Province, southwest China [J]. Quaternary Sciences, 2017, 37(6): 1271-1282(in Chinese). doi: 10.11928/j.issn.1001-7410.2017.06.11
[21] 原雅琼, 孙平安, 苏钊, 等. 岩溶流域洪水过程水化学动态变化及影响因素 [J]. 环境科学, 2019, 40(11): 4889-4899. doi: 10.13227/j.hjkx.201905022 YUAN Y Q, SUN P A, SU Z, et al. Dynamic changes in hydrochemical characteristics and influencing factors in the karst watershed flood process [J]. Environmental Science, 2019, 40(11): 4889-4899(in Chinese). doi: 10.13227/j.hjkx.201905022
[22] 周忠发, 张结, 潘艳喜, 等. 双河洞洞穴系统岩溶地表水-地下水主要离子化学特征及其来源分析 [J]. 科学技术与工程, 2018, 18(6): 5-13. doi: 10.3969/j.issn.1671-1815.2018.06.002 ZHOU Z F, ZHANG J, PAN Y X, et al. Chemical characteristics and source analysis of main ions in karst surface water and groundwater in Shuanghe cave system [J]. Science Technology and Engineering, 2018, 18(6): 5-13(in Chinese). doi: 10.3969/j.issn.1671-1815.2018.06.002
[23] 张结, 周忠发, 曹明达, 等. 双河洞小流域主要离子化学特征及其来源分析 [J]. 水土保持学报, 2017, 31(2): 327-332,338. doi: 10.13870/j.cnki.stbcxb.2017.02.053 ZHANG J, ZHOU Z F, CAO M D, et al. Hydrogeochemical characteristics and analysis of their sources in Karst small watershed of Shuanghe cave system [J]. Journal of Soil and Water Conservation, 2017, 31(2): 327-332,338(in Chinese). doi: 10.13870/j.cnki.stbcxb.2017.02.053
[24] 黄静, 周忠发, 丁圣君, 等. 双河洞流域氢氧同位素特征及其指示意义[J]. 地球与环境, 2022, 50(4): 516-525. HUANG J, ZHOU Z F, DING S J, et al. Characteristics of hydrogen and oxygen isotopes in Shuanghedong Basin and their implications [J]. Earth and Environment: 2022, 50(4): 516-525.
[25] 丁圣君, 周忠发, 石亮星, 等. 池武溪流域溶解无机碳特征及影响因素分析 [J]. 环境科学与技术, 2021, 44(6): 27-34. doi: 10.19672/j.cnki.1003-6504.2021.06.004 DING S J, ZHOU Z F, SHI L X, et al. Analysis of dissolved inorganic carbon characteristics and influencing factors in Chiwu River [J]. Environmental Science & Technology, 2021, 44(6): 27-34(in Chinese). doi: 10.19672/j.cnki.1003-6504.2021.06.004
[26] 张绍云, 周忠发, 田衷珲. 膏盐层下石膏晶洞水化学特征的环境指示意义 [J]. 科学技术与工程, 2017, 17(16): 13-20. doi: 10.3969/j.issn.1671-1815.2017.16.003 ZHANG S Y, ZHOU Z F, TIAN Z H. Environmental implications of hydro-chemical characteristics of gypsum holes in salt-gypsum bed [J]. Science Technology and Engineering, 2017, 17(16): 13-20(in Chinese). doi: 10.3969/j.issn.1671-1815.2017.16.003
[27] 周忠发, 张结, 殷超, 等. 岩溶洞穴地下水水化学特征及其地球化学敏感性比较: 以贵州双河洞和织金洞为例 [J]. 水利水电技术, 2017, 48(6): 98-105. ZHOU Z F, ZHANG J, YIN C, et al. Study on the water chemical characteristics and geochemical sensitivity of underground water in different lithologic development-a case study of Shuanghe cave and Zhijin cave system in Guizhou Province [J]. Water Resources and Hydropower Engineering, 2017, 48(6): 98-105(in Chinese).
[28] 李坡, 贺卫, 钱治. 双河洞地质公园研究[M]. 贵阳: 贵州人民出版社, 2008. LI P, HE W, QIAN Z. Study on Shuanghe cave geopark[M]. Guiyang: Guizhou People's Publishing House, 2008(in Chinese).
[29] 张结, 周忠发, 汪炎林, 等. 短时间高强度旅游活动下洞穴CO2的变化特征及对滴水水文地球化学的响应 [J]. 地理学报, 2018, 73(9): 1687-1701. doi: 10.11821/dlxb201809006 ZHANG J, ZHOU Z F, WANG Y L, et al. Variation of CO2 and its response to the drip hydrogeochemistry in caves under the short-time high-strength tourism activities [J]. Acta Geographica Sinica, 2018, 73(9): 1687-1701(in Chinese). doi: 10.11821/dlxb201809006
[30] 汤云涛, 周忠发, 薛冰清, 等. 岩溶洞穴水δ13CDIC时空变化及影响因素分析: 以贵州双河洞系麻黄支洞为例 [J]. 环境化学, 2020, 39(11): 3223-3234. doi: 10.7524/j.issn.0254-6108.2019081404 TANG Y T, ZHOU Z F, XUE B Q, et al. Analysis of variation characteristics and influencing factors of δ13CDIC in cave water of Mahuang Cave, Suiyang, Guizhou [J]. Environmental Chemistry, 2020, 39(11): 3223-3234(in Chinese). doi: 10.7524/j.issn.0254-6108.2019081404
[31] 安丹, 周忠发, 范宝祥, 等. 贵州大风洞洞穴空气CO2浓度及滴水水化学与洞穴通风的响应 [J]. 水土保持研究, 2020, 27(6): 338-345,352. AN D, ZHOU Z F, FAN B X, et al. Air CO2 concentration and response of dripping water chemistry to cave ventilation in Dafeng cave of Guizhou Province [J]. Research of Soil and Water Conservation, 2020, 27(6): 338-345,352(in Chinese).
[32] MEYBECK M, HELMER R. The quality of rivers: From pristine stage to global pollution [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1989, 75(4): 283-309. doi: 10.1016/0031-0182(89)90191-0
[33] 王琪, 于奭, 蒋萍萍, 等. 长江流域主要干/支流水化学特征及外源酸的影响 [J]. 环境科学, 2021, 42(10): 4687-4697. doi: 10.13227/j.hjkx.202012040 WANG Q, YU S, JIANG P P, et al. Water chemical characteristics and influence of exogenous acids in the Yangtze River Basin [J]. Environmental Science, 2021, 42(10): 4687-4697(in Chinese). doi: 10.13227/j.hjkx.202012040
[34] JIANG L G, YAO Z J, LIU Z F, et al. Hydrochemistry and its controlling factors of rivers in the source region of the Yangtze River on the Tibetan Plateau [J]. Journal of Geochemical Exploration, 2015, 155: 76-83. doi: 10.1016/j.gexplo.2015.04.009
[35] GAILLARDET J, DUPRÉ B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers [J]. Chemical Geology, 1999, 159(1-4): 3-30. doi: 10.1016/S0009-2541(99)00031-5
[36] 曹星星, 吴攀, 杨诗笛, 等. 贵州威宁草海流域地下水水化学特征及无机碳通量估算 [J]. 环境科学, 2021, 42(4): 1761-1771. CAO X X, WU P, YANG S D, et al. Hydrochemistry characteristics and estimation of the dissolved inorganic carbon flux in the Caohai Lake wetland catchment of Guizhou Province [J]. Environmental Science, 2021, 42(4): 1761-1771(in Chinese).
[37] HAN G L, LIU C Q. Water geochemistry controlled by carbonate dissolution: A study of the river waters draining karst-dominated terrain, Guizhou Province, China [J]. Chemical Geology, 2004, 204(1-2): 1-21. doi: 10.1016/j.chemgeo.2003.09.009
[38] XING M, LIU W G, WANG Z F, et al. Relationship of nitrate isotopic character to population density in the Loess Plateau of Northwest China [J]. Applied Geochemistry, 2013, 35: 110-119. doi: 10.1016/j.apgeochem.2013.04.002
[39] WEI Y N, FAN W, WANG W, et al. Identification of nitrate pollution sources of groundwater and analysis of potential pollution paths in loess regions: A case study in Tongchuan region, China [J]. Environmental Earth Sciences, 2017, 76(12): 1-13.
[40] MENGIS M, SCHIF S L, HARRIS M, et al. Multiple geochemical and isotopic approaches for assessing ground water NO3- elimination in a riparian zone [J]. Groundwater, 1999, 37(3): 448-457. doi: 10.1111/j.1745-6584.1999.tb01124.x
[41] JIANG Y J, YAN J. Effects of land use on hydrochemistry and contamination of karst groundwater from Nandong underground river system, China [J]. Water, Air, & Soil Pollution, 2010, 210(1-4): 123-141.
[42] JIANG Y J, WU Y X, GROVES C, et al. Natural and anthropogenic factors affecting the groundwater quality in the Nandong Karst underground river system in Yunan, China [J]. Journal of Contaminant Hydrology, 2009, 109(1-4): 49-61. doi: 10.1016/j.jconhyd.2009.08.001
[43] CUI R Y, FU B, MAO K M, et al. Identification of the sources and fate of NO3--N in shallow groundwater around a plateau lake in southwest China using NO3- isotopes (δ15N and δ18O) and a Bayesian model [J]. Journal of Environmental Management, 2020, 270: 110897. doi: 10.1016/j.jenvman.2020.110897
[44] LIU C Q, LI S L, LANG Y C, et al. Using 15N- and 18O-values to identify nitrate sources in karst ground water, Guiyang, southwest China [J]. Environmental Science & Technology, 2006, 40(22): 6928-6933.
[45] CHEN Z X, YU L, LIU W G, et al. Nitrogen and oxygen isotopic compositions of water-soluble nitrate in Taihu Lake water system, China: implication for nitrate sources and biogeochemical process [J]. Environmental Earth Sciences, 2014, 71(1): 217-223. doi: 10.1007/s12665-013-2425-9
[46] 李小倩, 刘运德, 周爱国, 等. 长江干流丰水期河水硫酸盐同位素组成特征及其来源解析 [J]. 地球科学, 2014, 39(11): 1647-1654, 1692. LI X Q, LIU Y D, ZHOU A G, et al. Sulfur and oxygen isotope compositions of dissolved sulfate in the Yangtze River during high water period and its sulfate source tracing [J]. Earth Science, 2014, 39(11): 1647-1654, 1692(in Chinese).
[47] 杨芬, 高柏, 葛勤, 等. 信江流域地下水水化学特征及形成机制 [J]. 科学技术与工程, 2021, 21(9): 3505-3512. doi: 10.3969/j.issn.1671-1815.2021.09.010 YANG F, GAO B, GE Q, et al. Hydro-chemical characteristics and formation mechanism of groundwater in Xinjiang River Basin [J]. Science Technology and Engineering, 2021, 21(9): 3505-3512(in Chinese). doi: 10.3969/j.issn.1671-1815.2021.09.010
[48] JIANG Y J. The contribution of human activities to dissolved inorganic carbon fluxes in a Karst underground river system: Evidence from major elements and δ13CDIC in Nandong, Southwest China [J]. Journal of Contaminant Hydrology, 2013, 152: 1-11. doi: 10.1016/j.jconhyd.2013.05.010