[1] |
AKCIL A, ERUST C, OZDEMIROGLU S, et al. A review of approaches and techniques used in aquatic contaminated sediments: Metal removal and stabilization by chemical and biotechnological processes [J]. Journal of Cleaner Production, 2015, 86: 24-36. doi: 10.1016/j.jclepro.2014.08.009
|
[2] |
BOLAN N, KUNHIKRISHNAN A, THANGARAJAN R, et al. Remediation of heavy metal(loid)s contaminated soils - To mobilize or to immobilize? [J]. Journal of Hazardous Materials, 2014, 266: 141-166. doi: 10.1016/j.jhazmat.2013.12.018
|
[3] |
FAN C C, WANG B M, ZHANG T T. Review on cement stabilization/solidification of municipal solid waste incineration fly ash [J]. Advances in Materials Science and Engineering, 2018: 5120649.
|
[4] |
梁雅雅, 易筱筠, 党志, 等. 某铅锌尾矿库周边农田土壤重金属污染状况及风险评价 [J]. 农业环境科学学报, 2019, 38(1): 103-110. doi: 10.11654/jaes.2018-0252
LIANG Y Y, YI X Y, DANG Z, et al. Pollution and risk assessment of heavy metals in agricultural soils around a Pb-Zn tailing pond [J]. Journal of Agro-Environment Science, 2019, 38(1): 103-110(in Chinese). doi: 10.11654/jaes.2018-0252
|
[5] |
LI Z Y, MA Z W, van der KUIJP T J, et al. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment [J]. Science of the Total Environment, 2014, 468/469: 843-853. doi: 10.1016/j.scitotenv.2013.08.090
|
[6] |
JIANG X W, LIU W H, XU H, et al. Characterizations of heavy metal contamination, microbial community, and resistance genes in a tailing of the largest copper mine in China [J]. Environmental Pollution, 2021, 280: 116947. doi: 10.1016/j.envpol.2021.116947
|
[7] |
ZHANG M J, SUN M J, WANG J L, et al. Geographical distribution and risk assessment of heavy metals: A case study of mine tailings pond [J]. Chemistry and Ecology, 2020, 36(1): 1-15. doi: 10.1080/02757540.2019.1676420
|
[8] |
BEMPAH C K, EWUSI A. Heavy metals contamination and human health risk assessment around Obuasi gold mine in Ghana [J]. Environmental Monitoring and Assessment, 2016, 188(5): 261. doi: 10.1007/s10661-016-5241-3
|
[9] |
竹涛. 矿山固体废物处理与处置工程[M]. 北京: 冶金工业出版社, 2016.
ZHU T. Mine solid waste treatment and disposal project [M]. Beijing: Metallurgical Industry Press, 2016(in Chinese).
|
[10] |
SAWYER S. International Waste Technologies/Geo-Con in situ stabilization/solidification: Applications analysis report[R]. Tech. Rep. EPA/540/A5-89/004, United States Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA, 1990.
|
[11] |
BARTH E F. An overview of the history, present status, and future direction of solidification/stabilization technologies for hazardous waste treatment [J]. Journal of Hazardous Materials, 1990, 24(2/3): 103-109.
|
[12] |
环境保护部. 固体废物浸出毒性浸出方法 水平振荡法: HJ 557—2010[S]. 北京: 中国环境科学出版社, 2010.
Ministry of Environmental Protection of the People's Republic of China. Solid waste-Extraction procedure for leaching toxicity-Horizontal vibration method: HJ 557—2010[S]. Beijing: China Environment Science Press, 2010(in Chinese).
|
[13] |
刘锋, 王琪, 黄启飞, 等. 固体废物浸出毒性浸出方法标准研究 [J]. 环境科学研究, 2008, 21(6): 9-15. doi: 10.13198/j.res.2008.06.11.liuf.015
LIU F, WANG Q, HUANG Q F, et al. Study on the standard methods of leaching toxicity of solid waste [J]. Research of Environmental Sciences, 2008, 21(6): 9-15(in Chinese). doi: 10.13198/j.res.2008.06.11.liuf.015
|
[14] |
EPA U S. Toxicity Characteristics Leaching Procedure, Method 1311[S]. 1992.
|
[15] |
INSTITUTION B S. En 12457 Leaching - Compliance Test For Leaching Of Granular Waste Materials[S]. 1996.
|
[16] |
TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals [J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017
|
[17] |
URE A M, QUEVAUVILLER P, MUNTAU H, et al. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the commission of the European communities [J]. International Journal of Environmental Analytical Chemistry, 1993, 51(1/2/3/4): 135-151.
|
[18] |
LIU J X, JIANG X M, ZHANG Y C, et al. Size segregation behavior of heavy metals in superfine pulverized coal using synchrotron radiation-induced X-ray fluorescence [J]. Fuel, 2016, 181: 1081-1088. doi: 10.1016/j.fuel.2016.04.115
|
[19] |
JIANG L, SUN H J, PENG T J, et al. Comprehensive evaluation of environmental availability, pollution level and leaching heavy metals behavior in non-ferrous metal tailings [J]. Journal of Environmental Management, 2021, 290: 112639. doi: 10.1016/j.jenvman.2021.112639
|
[20] |
RAZZELL W E. Chemical fixation, solidification of hazardous waste [J]. Waste Management & Research, 1990, 8(2): 105-111.
|
[21] |
CONNER J R, HOEFFNER S L. A critical review of stabilization/solidification technology [J]. Critical Reviews in Environmental Science and Technology, 1998, 28(4): 397-462. doi: 10.1080/10643389891254250
|
[22] |
段荣国. 中国水泥生产的物质消耗和环境排放分析 [J]. 工程技术(文摘版)·建筑, 2017(1): 92.
DUAN R G. Material consumption and environmental emission analysis of Cement production in China [J]. Engineering Technology (Abstract Edition)· Architecture, 2017(1): 92(in Chinese).
|
[23] |
GRÜNHÄUSER SOARES E, CASTRO-GOMES J. Carbonation curing influencing factors of Carbonated Reactive Magnesia Cements (CRMC) - A review [J]. Journal of Cleaner Production, 2021, 305: 127210. doi: 10.1016/j.jclepro.2021.127210
|
[24] |
CHEN I A, HARGIS C W, JUENGER M C G. Understanding expansion in calcium sulfoaluminate-belite cements [J]. Cement and Concrete Research, 2012, 42(1): 51-60. doi: 10.1016/j.cemconres.2011.07.010
|
[25] |
ZHANG H Q, YANG Y Y, YI Y C. Effect of sulfate erosion on strength and leaching characteristic of stabilized heavy metal contaminated red clay [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(3): 666-675. doi: 10.1016/S1003-6326(17)60074-8
|
[26] |
WANG L, YU K Q, LI J S, et al. Low-carbon and low-alkalinity stabilization/solidification of high-Pb contaminated soil [J]. Chemical Engineering Journal, 2018, 351: 418-427. doi: 10.1016/j.cej.2018.06.118
|
[27] |
LI Z D, LI T H, SHI L Z, et al. The rainfall effect onto solidification and stabilization of heavy metal-polluted sediments [J]. Royal Society Open Science, 2020, 7(7): 192234. doi: 10.1098/rsos.192234
|
[28] |
GU Y C, LI J L, PENG J K, et al. Immobilization of hazardous ferronickel slag treated using ternary limestone calcined clay cement [J]. Construction and Building Materials, 2020, 250: 118837. doi: 10.1016/j.conbuildmat.2020.118837
|
[29] |
GÁLVEZ-MARTOS J L, VALENTE A, MARTÍNEZ-FERNÁNDEZ M, et al. Eco-efficiency assessment of calcium sulfoaluminate clinker production [J]. Journal of Industrial Ecology, 2020, 24(3): 695-706. doi: 10.1111/jiec.12967
|
[30] |
TEERAWATTANASUK C, VOOTTIPRUEX P, HORPIBULSUK S. Improved heavy metal immobilization of compacted clay by cement treatment [J]. Heliyon, 2021, 7(4): e06917. doi: 10.1016/j.heliyon.2021.e06917
|
[31] |
OUHADI V R, YONG R N, DEIRANLOU M. Enhancement of cement-based solidification/stabilization of a lead-contaminated smectite clay [J]. Journal of Hazardous Materials, 2021, 403: 123969. doi: 10.1016/j.jhazmat.2020.123969
|
[32] |
CAO X, MA R, ZHANG Q S, et al. The factors influencing sludge incineration residue (SIR)-based magnesium potassium phosphate cement and the solidification/stabilization characteristics and mechanisms of heavy metals [J]. Chemosphere, 2020, 261: 127789. doi: 10.1016/j.chemosphere.2020.127789
|
[33] |
KIVENTERÄ J, PIEKKARI K, ISTERI V, et al. Solidification/stabilization of gold mine tailings using calcium sulfoaluminate-belite cement [J]. Journal of Cleaner Production, 2019, 239: 118008. doi: 10.1016/j.jclepro.2019.118008
|
[34] |
REDDY V A, SOLANKI C H, KUMAR S, et al. Comparison of limestone calcined clay cement and ordinary Portland cement for stabilization/solidification of Pb-Zn smelter residue [J]. Environmental Science and Pollution Research International, 2022, 29(8): 11393-11404. doi: 10.1007/s11356-021-16421-w
|
[35] |
PANTAZOPOULOU E, NTINOUDI E, ZOUBOULIS A I, et al. Heavy metal stabilization of industrial solid wastes using low-grade magnesia, Portland and magnesia cements [J]. Journal of Material Cycles and Waste Management, 2020, 22(4): 975-985. doi: 10.1007/s10163-020-00985-9
|
[36] |
FAHIM HUSEIEN G, MIRZA J, ISMAIL M, et al. Geopolymer mortars as sustainable repair material: A comprehensive review [J]. Renewable and Sustainable Energy Reviews, 2017, 80: 54-74. doi: 10.1016/j.rser.2017.05.076
|
[37] |
DAVIDOVITS J. Geopolymers [J]. Journal of Thermal Analysis, 1991, 37(8): 1633-1656. doi: 10.1007/BF01912193
|
[38] |
ALBITAR M, MOHAMED ALI M S, VISINTIN P. Experimental study on fly ash and lead smelter slag-based geopolymer concrete columns [J]. Construction and Building Materials, 2017, 141: 104-112. doi: 10.1016/j.conbuildmat.2017.03.014
|
[39] |
NATH S K, MUKHERJEE S, MAITRA S, et al. Kinetics study of geopolymerization of fly ash using isothermal conduction calorimetry [J]. Journal of Thermal Analysis and Calorimetry, 2017, 127(3): 1953-1961. doi: 10.1007/s10973-016-5823-x
|
[40] |
KOMNITSAS K, ZAHARAKI D. Geopolymerisation: A review and prospects for the minerals industry [J]. Minerals Engineering, 2007, 20(14): 1261-1277. doi: 10.1016/j.mineng.2007.07.011
|
[41] |
PÉREZ-VILLAREJO L, BONET-MARTÍNEZ E, ELICHE-QUESADA D, et al. Biomass fly ash and aluminium industry slags-based geopolymers [J]. Materials Letters, 2018, 229: 6-12. doi: 10.1016/j.matlet.2018.06.100
|
[42] |
ZHANG Z H, ZHU H J, ZHOU C H, et al. Geopolymer from Kaolin in China: An overview [J]. Applied Clay Science, 2016, 119: 31-41. doi: 10.1016/j.clay.2015.04.023
|
[43] |
(法)约瑟夫·戴维德维斯. 地聚合物化学及应用[M]. 北京: 国防工业出版社, 2011.
JOSEPH D. Geopolymer chemistry & applications[M]. Beijing: National Defense Industry Press, 2011(in Chinese).
|
[44] |
HAJIMOHAMMADI A, NGO T, KASHANI A. Glass waste versus sand as aggregates: The characteristics of the evolving geopolymer binders [J]. Journal of Cleaner Production, 2018, 193(aug.20): 593-603.
|
[45] |
LI J, LI J X, WEI H, et al. Alkaline-thermal activated electrolytic manganese residue-based geopolymers for efficient immobilization of heavy metals [J]. Construction and Building Materials, 2021, 298: 123853. doi: 10.1016/j.conbuildmat.2021.123853
|
[46] |
LI Y C, MIN X B, KE Y, et al. Preparation of red mud-based geopolymer materials from MSWI fly ash and red mud by mechanical activation [J]. Waste Management, 2019, 83: 202-208. doi: 10.1016/j.wasman.2018.11.019
|
[47] |
ZHANG X L, ZHANG S Y, LIU H, et al. Disposal of mine tailings via geopolymerization [J]. Journal of Cleaner Production, 2021, 284: 124756. doi: 10.1016/j.jclepro.2020.124756
|
[48] |
KRÄNZLEIN E, HARMEL J, PÖLLMANN H, et al. Influence of the Si/Al ratio in geopolymers on the stability against acidic attack and the immobilization of Pb2+ and Zn2+ [J]. Construction and Building Materials, 2019, 227: 116634. doi: 10.1016/j.conbuildmat.2019.08.015
|
[49] |
BOCA SANTA R A A, SOARES C, RIELLA H G. Geopolymers with a high percentage of bottom ash for solidification/immobilization of different toxic metals [J]. Journal of Hazardous Materials, 2016, 318: 145-153. doi: 10.1016/j.jhazmat.2016.06.059
|
[50] |
FAN C C, WANG B M, AI H M, et al. A comparative study on solidification/stabilization characteristics of coal fly ash-based geopolymer and Portland cement on heavy metals in MSWI fly ash [J]. Journal of Cleaner Production, 2021, 319: 128790. doi: 10.1016/j.jclepro.2021.128790
|
[51] |
XIA M, MUHAMMAD F, ZENG L H, et al. Solidification/stabilization of lead-zinc smelting slag in composite based geopolymer [J]. Journal of Cleaner Production, 2019, 209: 1206-1215. doi: 10.1016/j.jclepro.2018.10.265
|
[52] |
CHEN Y C, CHEN F Y, ZHOU F, et al. Early solidification/stabilization mechanism of heavy metals (Pb, Cr and Zn) in Shell coal gasification fly ash based geopolymer [J]. Science of the Total Environment, 2022, 802: 149905. doi: 10.1016/j.scitotenv.2021.149905
|
[53] |
KIVENTERÄ J, LANCELLOTTI I, CATAURO M, et al. Alkali activation as new option for gold mine tailings inertization [J]. Journal of Cleaner Production, 2018, 187: 76-84. doi: 10.1016/j.jclepro.2018.03.182
|
[54] |
SUN S C, LIN J H, ZHANG P X, et al. Geopolymer synthetized from sludge residue pretreated by the wet alkalinizing method: Compressive strength and immobilization efficiency of heavy metal [J]. Construction and Building Materials, 2018, 170: 619-626. doi: 10.1016/j.conbuildmat.2018.03.068
|
[55] |
HU S X, ZHONG L L, YANG X J, et al. Synthesis of rare earth tailing-based geopolymer for efficiently immobilizing heavy metals [J]. Construction and Building Materials, 2020, 254: 119273. doi: 10.1016/j.conbuildmat.2020.119273
|
[56] |
WANG Y G, HAN F L, MU J Q. Solidification/stabilization mechanism of Pb(II), Cd(II), Mn(II) and Cr(III) in fly ash based geopolymers [J]. Construction and Building Materials, 2018, 160: 818-827. doi: 10.1016/j.conbuildmat.2017.12.006
|
[57] |
DERAKHSHAN NEJAD Z, JUNG M C, KIM K H. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology [J]. Environmental Geochemistry and Health, 2018, 40(3): 927-953. doi: 10.1007/s10653-017-9964-z
|
[58] |
LEI C, CHEN T, ZHANG Q Y, et al. Remediation of lead polluted soil by active silicate material prepared from coal fly ash [J]. Ecotoxicology and Environmental Safety, 2020, 206: 111409. doi: 10.1016/j.ecoenv.2020.111409
|
[59] |
YUAN X Z, XIONG T, WANG H, et al. Immobilization of heavy metals in two contaminated soils using a modified magnesium silicate stabilizer [J]. Environmental Science and Pollution Research, 2018, 25(32): 32562-32571. doi: 10.1007/s11356-018-3140-6
|
[60] |
BAKER M R, COUTELOT F M, SEAMAN J C. Phosphate amendments for chemical immobilization of uranium in contaminated soil [J]. Environment International, 2019, 129: 565-572. doi: 10.1016/j.envint.2019.03.017
|
[61] |
WANG X, ZHANG H, WANG L L, et al. Transformation of arsenic during realgar tailings stabilization using ferrous sulfate in a pilot-scale treatment [J]. Science of the Total Environment, 2019, 668: 32-39. doi: 10.1016/j.scitotenv.2019.02.289
|
[62] |
CARLSON L, BIGHAM J M, SCHWERTMANN U, et al. Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: A comparison with synthetic analogues [J]. Environmental Science & Technology, 2002, 36(8): 1712-1719.
|
[63] |
刘引, 杨为中, 孙晓龙, 等. 无机试剂无害化处理垃圾焚烧飞灰的研究 [J]. 环境科学导刊, 2015, 34(5): 72-77. doi: 10.3969/j.issn.1673-9655.2015.05.020
LIU Y, YANG W Z, SUN X L, et al. Experimental study of heavy metal stabilization in fly ash of waste combustion using inorganic reagents [J]. Environmental Science Survey, 2015, 34(5): 72-77(in Chinese). doi: 10.3969/j.issn.1673-9655.2015.05.020
|
[64] |
殷景华, 王雅珍, 鞠刚. 功能材料概论[M]. 哈尔滨: 哈尔滨工业大学出版社, 2017.
YIN J H, WANG Y Z, JU G. An introduction to functional materials[M]. Harbin: Harbin Institute of Technology Press, 2017(in Chinese).
|
[65] |
ZHENG L, WANG W, LI Z F, et al. Immobilization of heavy metal using dithiocarbamate agent [J]. Journal of Material Cycles and Waste Management, 2019, 21(3): 652-658. doi: 10.1007/s10163-019-00829-1
|
[66] |
ZHU J M, HAO Q J, CHEN J J, et al. Distribution characteristics and comparison of chemical stabilization ways of heavy metals from MSW incineration fly ashes [J]. Waste Management, 2020, 113: 488-496. doi: 10.1016/j.wasman.2020.06.032
|
[67] |
LUO Z T, TANG C B, HAO Y H, et al. Solidification/stabilization of heavy metals and its efficiency in lead-zinc tailings using different chemical agents [J]. Environmental Technology, 2020: 1-11.
|
[68] |
WANG F H, ZHANG F, CHEN Y J, et al. A comparative study on the heavy metal solidification/stabilization performance of four chemical solidifying agents in municipal solid waste incineration fly ash [J]. Journal of Hazardous Materials, 2015, 300: 451-458. doi: 10.1016/j.jhazmat.2015.07.037
|
[69] |
XU Y. Stabilization of heavy metal-contaminated sediment with a Chelator and humic acid mixture [J]. Water, Air, & Soil Pollution, 2016, 228(1): 1-11.
|
[70] |
蒋建国, 王伟, 李国鼎, 等. 重金属螯合剂处理焚烧飞灰的稳定化技术研究 [J]. 环境科学, 1999, 20(3): 13-17. doi: 10.3321/j.issn:0250-3301.1999.03.004
JIANG J G, WANG W, LI G D, et al. Experimental study on the chemical stabilization technology in treating with fly ash using heavy metal chelating agent [J]. Environmental Science, 1999, 20(3): 13-17(in Chinese). doi: 10.3321/j.issn:0250-3301.1999.03.004
|
[71] |
朱节民, 李梦雅, 郑德聪, 等. 重庆市垃圾焚烧飞灰中重金属分布特征及药剂稳定化处理 [J]. 环境化学, 2018, 37(4): 880-888. doi: 10.7524/j.issn.0254-6108.2017091407
ZHU J M, LI M Y, ZHENG D C, et al. Distribution and chemical stabilization of heavy metals in municipal solid waste incineration fly ash of Chongqing [J]. Environmental Chemistry, 2018, 37(4): 880-888(in Chinese). doi: 10.7524/j.issn.0254-6108.2017091407
|
[72] |
SU P D, ZHANG J K, LI Y D. Investigation of chemical associations and leaching behavior of heavy metals in sodium sulfide hydrate stabilized stainless steel pickling sludge [J]. Process Safety and Environmental Protection, 2019, 123: 79-86. doi: 10.1016/j.psep.2019.01.001
|
[73] |
LYU H H, ZHAO H, TANG J C, et al. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite [J]. Chemosphere, 2018, 194: 360-369. doi: 10.1016/j.chemosphere.2017.11.182
|
[74] |
OSBORNE L R, BAKER L L, STRAWN D G. Lead immobilization and phosphorus availability in phosphate-amended, mine-contaminated soils [J]. Journal of Environmental Quality, 2015, 44(1): 183-190. doi: 10.2134/jeq2014.07.0323
|
[75] |
ZHANG B R, ZHOU W X, ZHAO H P, et al. Stabilization/solidification of lead in MSWI fly ash with mercapto functionalized dendrimer Chelator [J]. Waste Management, 2016, 50: 105-112. doi: 10.1016/j.wasman.2016.02.001
|
[76] |
郑鹏, 刘建国, 刘锋, 等. 垃圾焚烧飞灰磷酸洗涤对重金属的固定效应研究 [J]. 环境工程学报, 2007, 1(1): 121-125. doi: 10.3969/j.issn.1673-9108.2007.01.031
ZHENG P, LIU J G, LIU F, et al. Effects of phosphoric acid washing on immobilization of heavy metals in municipal solid waste incineration fly ash [J]. Chinese Journal of Environmental Engineering, 2007, 1(1): 121-125(in Chinese). doi: 10.3969/j.issn.1673-9108.2007.01.031
|
[77] |
ZHANG Z B, SHI X H, ZHANG Y H, et al. Study on immobilization of diatomite, Ca(H2PO4)2, CaCO3, HAP and nano-HAP for heavy metal contaminated sediment [J]. Water Quality Research Journal, 2020, 55(4): 370-381. doi: 10.2166/wqrj.2020.117
|
[78] |
陆俏利, 瞿广飞, 吴斌, 等. 矿区含砷尾矿及废渣稳定化研究 [J]. 环境工程学报, 2016, 10(5): 2587-2594. doi: 10.12030/j.cjee.201412257
LU Q L, QU G F, WU B, et al. Study on stabilization of arsenic tailings and waste residue [J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2587-2594(in Chinese). doi: 10.12030/j.cjee.201412257
|
[79] |
LI X Y, CHEN Q Y, ZHOU Y S, et al. Stabilization of heavy metals in MSWI fly ash using silica fume [J]. Waste Management, 2014, 34(12): 2494-2504. doi: 10.1016/j.wasman.2014.08.027
|
[80] |
XU Y, CHEN Y, FENG Y Y. Stabilization treatment of the heavy metals in fly ash from municipal solid waste incineration using diisopropyl dithiophosphate potassium [J]. Environmental Technology, 2013, 34(9/10/11/12): 1411-1419.
|
[81] |
ZHANG M L, GUO M R, ZHANG B R, et al. Stabilization of heavy metals in MSWI fly ash with a novel dithiocarboxylate-functionalized polyaminoamide dendrimer [J]. Waste Management, 2020, 105: 289-298. doi: 10.1016/j.wasman.2020.02.004
|
[82] |
李静, 周斌, 易新建, 等. 垃圾焚烧飞灰重金属稳定化药剂处理效果 [J]. 环境工程学报, 2016, 10(6): 3242-3248. doi: 10.12030/j.cjee.201501090
LI J, ZHOU B, YI X J, et al. Treatment efficiencies of heavy metals in municipal solid waste incineration fly ash with stabilization agents [J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 3242-3248(in Chinese). doi: 10.12030/j.cjee.201501090
|
[83] |
刘元元, 王里奥, 林祥, 等. 城市垃圾焚烧飞灰重金属药剂配伍稳定化实验研究 [J]. 环境工程学报, 2007, 1(10): 94-99. doi: 10.3969/j.issn.1673-9108.2007.10.022
LIU Y Y, WANG L, LIN X, et al. Experimental study of the stabilization of heavy metals in municipal solid waste incineration fly ash by chemical agent matching [J]. Chinese Journal of Environmental Engineering, 2007, 1(10): 94-99(in Chinese). doi: 10.3969/j.issn.1673-9108.2007.10.022
|
[84] |
CHOI S G, CHANG I, LEE M, et al. Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers [J]. Construction and Building Materials, 2020, 246: 118415. doi: 10.1016/j.conbuildmat.2020.118415
|
[85] |
KRAJEWSKA B. Urease-aided calcium carbonate mineralization for engineering applications: A review [J]. Journal of Advanced Research, 2018, 13: 59-67. doi: 10.1016/j.jare.2017.10.009
|
[86] |
HAN L J, LI J S, XUE Q, et al. Bacterial-induced mineralization (BIM) for soil solidification and heavy metal stabilization: A critical review [J]. Science of the Total Environment, 2020, 746: 140967. doi: 10.1016/j.scitotenv.2020.140967
|
[87] |
MAITY J P, CHEN G S, HUANG Y H, et al. Ecofriendly heavy metal stabilization: Microbial induced mineral precipitation (MIMP) and biomineralization for heavy metals within the contaminated soil by indigenous bacteria [J]. Geomicrobiology Journal, 2019, 36(7): 612-623. doi: 10.1080/01490451.2019.1597216
|
[88] |
VALENZUELA E I, GARCÍA-FIGUEROA A C, AMÁBILIS-SOSA L E, et al. Stabilization of potentially toxic elements contained in mine waste: A microbiological approach for the environmental management of mine tailings [J]. Journal of Environmental Management, 2020, 270: 110873. doi: 10.1016/j.jenvman.2020.110873
|
[89] |
CHEN P, ZHENG H, XU H, et al. Microbial induced solidification and stabilization of municipal solid waste incineration fly ash with high alkalinity and heavy metal toxicity [J]. PLoS One, 2019, 14(10): e0223900. doi: 10.1371/journal.pone.0223900
|
[90] |
QIAN C X, YU X N, WANG X. Potential uses and cementing mechanism of bio-carbonate cement and bio-phosphate cement [J]. AIP Advances, 2018, 8(9): 095224. doi: 10.1063/1.5040730
|
[91] |
WANG Z Y, ZHANG N, CAI G J, et al. Review of ground improvement using microbial induced carbonate precipitation (MICP) [J]. Marine Georesources & Geotechnology, 2017, 35(8): 1135-1146.
|
[92] |
LI C K, LI Q S, WANG Z P, et al. Environmental fungi and bacteria facilitate lecithin decomposition and the transformation of phosphorus to apatite [J]. Scientific Reports, 2019, 9(1): 15291. doi: 10.1038/s41598-019-51804-7
|
[93] |
YU X N, JIANG J G. Phosphate microbial mineralization consolidation of waste incineration fly ash and removal of lead ions [J]. Ecotoxicology and Environmental Safety, 2020, 191: 110224. doi: 10.1016/j.ecoenv.2020.110224
|
[94] |
LIU X Y, ZHANG M J, LI Y B, et al. In situ bioremediation of tailings by sulfate reducing bacteria and iron reducing bacteria: Lab- and field-scale remediation of sulfidic mine tailings [J]. Solid State Phenomena, 2017, 262: 651-655. doi: 10.4028/www.scientific.net/SSP.262.651
|
[95] |
SHEORA N A S, SHEORAN V, CHOUDHARY R P. Bioremediation of acid-rock drainage by sulphate-reducing prokaryotes: A review [J]. Minerals Engineering, 2010, 23(14): 1073-1100. doi: 10.1016/j.mineng.2010.07.001
|
[96] |
LI F, WANG W, LI C C, et al. Self-mediated pH changes in culture medium affecting biosorption and biomineralization of Cd2+ by Bacillus cereus Cd [J]. Journal of Hazardous Materials, 2018, 358: 178-186. doi: 10.1016/j.jhazmat.2018.06.066
|
[97] |
KANG C H, KWON Y J, SO J S. Bioremediation of heavy metals by using bacterial mixtures [J]. Ecological Engineering, 2016, 89: 64-69. doi: 10.1016/j.ecoleng.2016.01.023
|
[98] |
BHATTACHARYA A, NAIK S N, KHARE S K. Harnessing the bio-mineralization ability of urease producing Serratia marcescens and Enterobacter cloacae EMB19 for remediation of heavy metal cadmium (Ⅱ) [J]. Journal of Environmental Management, 2018, 215: 143-152. doi: 10.1016/j.jenvman.2018.03.055
|
[99] |
LI M, CHENG X H, GUO H X, et al. Biomineralization of carbonate by Terrabacter tumescens for heavy metal removal and biogrouting applications [J]. Journal of Environmental Engineering, 2016, 142(9): 1-5.
|
[100] |
ZHU X J, LI W L, ZHAN L, et al. The large-scale process of microbial carbonate precipitation for nickel remediation from an industrial soil [J]. Environmental Pollution, 2016, 219: 149-155. doi: 10.1016/j.envpol.2016.10.047
|
[101] |
ZHAO X M, DO H, ZHOU Y, et al. Rahnella sp. LRP3 induces phosphate precipitation of Cu (Ⅱ) and its role in copper-contaminated soil remediation [J]. Journal of Hazardous Materials, 2019, 368: 133-140. doi: 10.1016/j.jhazmat.2019.01.029
|
[102] |
ZHANG K J, ZHANG D W, WU X J, et al. Continuous and efficient immobilization of heavy metals by phosphate-mineralized bacterial consortium [J]. Journal of Hazardous Materials, 2021, 416: 125800. doi: 10.1016/j.jhazmat.2021.125800
|
[103] |
HAN L J, LI J S, XUE Q, et al. Enzymatically induced phosphate precipitation (EIPP) for stabilization/solidification (S/S) treatment of heavy metal tailings [J]. Construction and Building Materials, 2022, 314: 125577. doi: 10.1016/j.conbuildmat.2021.125577
|
[104] |
LI X, WU Y E, ZHANG C, et al. Immobilizing of heavy metals in sediments contaminated by nonferrous metals smelting plant sewage with sulfate reducing bacteria and micro zero valent iron [J]. Chemical Engineering Journal, 2016, 306: 393-400. doi: 10.1016/j.cej.2016.07.079
|
[105] |
LIU Y J, WU S L, SOUTHAM G, et al. Bioaugmentation with Acidithiobacillus species accelerates mineral weathering and formation of secondary mineral cements for hardpan development in sulfidic Pb-Zn tailings [J]. Journal of Hazardous Materials, 2021, 411: 124988. doi: 10.1016/j.jhazmat.2020.124988
|