[1] 朱亚凯, 蔡文彬. 可降解塑料产业发展概述 [J]. 塑料包装, 2021, 31(3): 19-21. doi: 10.3969/j.issn.1006-9828.2021.03.005 ZHU Y K, CAI W B. Development of degradable plastics industry [J]. Plastics Packaging, 2021, 31(3): 19-21(in Chinese). doi: 10.3969/j.issn.1006-9828.2021.03.005
[2] 张宗飞, 王锦玉, 谢鸿洲, 等. 可降解塑料的发展现状及趋势 [J]. 化肥设计, 2021, 59(6): 10-14,41. doi: 10.3969/j.issn.1004-8901.2021.06.002 ZHANG Z F, WANG J Y, XIE H Z, et al. Development status and trend of degradable plastics [J]. Chemical Fertilizer Design, 2021, 59(6): 10-14,41(in Chinese). doi: 10.3969/j.issn.1004-8901.2021.06.002
[3] 王梅. 可降解塑料的绿色环保发展路径探索 [J]. 资源节约与环保, 2016(5): 11,15. doi: 10.16317/j.cnki.12-1377/x.2016.05.016 WANG M. Exploration on the green development path of degradable plastics [J]. Resources Economization & Environmental Protection, 2016(5): 11,15(in Chinese). doi: 10.16317/j.cnki.12-1377/x.2016.05.016
[4] 刘春. 生物可降解塑料的开发进展 [J]. 现代塑料加工应用, 2020, 32(3): 60-63. doi: 10.19690/j.issn1004-3055.20200032 LIU C. Development progress of biodegradable plastics [J]. Modern Plastics Processing and Applications, 2020, 32(3): 60-63(in Chinese). doi: 10.19690/j.issn1004-3055.20200032
[5] TEIXEIRA S, EBLAGON K M, MIRANDA F, et al. Towards controlled degradation of poly(lactic) acid in technical applications [J]. C-Journal of Carbon Research, 2021, 7(2): 42. doi: 10.3390/c7020042
[6] 万和江. 可降解塑料的研发与应用 [J]. 中氮肥, 2021(2): 1-5. doi: 10.3969/j.issn.1004-9932.2021.02.002 WAN H J. Development and application of degradable plastics [J]. M-Sized Nitrogenous Fertilizer Progress, 2021(2): 1-5(in Chinese). doi: 10.3969/j.issn.1004-9932.2021.02.002
[7] SHEN M C, SONG B, ZENG G M, et al. Are biodegradable plastics a promising solution to solve the global plastic pollution? [J]. Environmental Pollution, 2020, 263: 114469. doi: 10.1016/j.envpol.2020.114469
[8] 中国物资再生协会. 可降解塑料行业现状 [J]. 中国资源综合利用, 2021, 39(3): 71. China National Resources Recycling Association. Present situation of degradable plastics industry [J]. China Resources Comprehensive Utilization, 2021, 39(3): 71(in Chinese).
[9] KRZAN A, HEMJINDA S, MIERTUS S, et al. Standardization and certification in the area of environmentally degradable plastics [J]. Polymer Degradation and Stability, 2006, 91(12): 2819-2833. doi: 10.1016/j.polymdegradstab.2006.04.034
[10] 石鎏杰, 朱佳欢, 施均, 等. 可降解塑料产品的分类与标识的现状与展望 [J]. 塑料助剂, 2021(3): 1-5. SHI L J, ZHU J H, SHI J, et al. Classification and identification of degradable plastic products: Current situation and prospect [J]. Plastics Additives, 2021(3): 1-5(in Chinese).
[11] UNMAR G, MOHEE R. Assessing the effect of biodegradable and degradable plastics on the composting of green wastes and compost quality [J]. Bioresource Technology, 2008, 99(15): 6738-6744. doi: 10.1016/j.biortech.2008.01.016
[12] 周功友. 大直径筒中筒滑模施工技术[J]. 施工技术, 2007, 36(S1): 292-294. ZHOU G Y. Construction technology of tube-in-tube with large diameter slipform[J]. Construction Technology, 2007, 36(Sup 1): 292-294(in Chinese).
[13] SARMA A, DAS M K. Improving the sustainable performance of Biopolymers using nanotechnology [J]. Polymer-Plastics Technology and Materials, 2021, 60(18): 1935-1965.
[14] ȘUCU T, SHAVER M P. Inherently degradable cross-linked polyesters and polycarbonates: Resins to be cheerful [J]. Polymer Chemistry, 2020, 11(40): 6397-6412. doi: 10.1039/D0PY01226B
[15] BARRON A, SPARKS T D. Commercial marine-degradable polymers for flexible packaging [J]. iScience, 2020, 23(8): 101353. doi: 10.1016/j.isci.2020.101353
[16] ABDELMOEZ W, DAHAB I, RAGAB E M, et al. Bio- and oxo-degradable plastics: Insights on facts and challenges [J]. Polymers for Advanced Technologies, 2021, 32(5): 1981-1996. doi: 10.1002/pat.5253
[17] 金林宇, 何思远, 李丹, 等. 可降解材料现状及其在海洋领域的研究进展 [J]. 包装工程, 2020, 41(19): 108-115. doi: 10.19554/j.cnki.1001-3563.2020.19.015 JIN L Y, HE S Y, LI D, et al. Status of degradable materials and their progress in marine research [J]. Packaging Engineering, 2020, 41(19): 108-115(in Chinese). doi: 10.19554/j.cnki.1001-3563.2020.19.015
[18] 李冬芸, 韩昭良. 生物可降解塑料的生产现状及应用 [J]. 合成树脂及塑料, 2021, 38(5): 83-86. doi: 10.19825/j.issn.1002-1396.2021.05.20 LI D Y, HAN Z L. Production and application of biodegradable plastics [J]. China Synthetic Resin and Plastics, 2021, 38(5): 83-86(in Chinese). doi: 10.19825/j.issn.1002-1396.2021.05.20
[19] 张芮菡. 可降解塑料的种类与应用现状 [J]. 当代化工研究, 2019(1): 20-21. doi: 10.3969/j.issn.1672-8114.2019.01.013 ZHANG R H. Types and application status of degradable plastics [J]. Modern Chemical Research, 2019(1): 20-21(in Chinese). doi: 10.3969/j.issn.1672-8114.2019.01.013
[20] KABIR E, KAUR R, LEE J, et al. Prospects of biopolymer technology as an alternative option for non-degradable plastics and sustainable management of plastic wastes [J]. Journal of Cleaner Production, 2020, 258: 120536. doi: 10.1016/j.jclepro.2020.120536
[21] 朱天戈, 杨勇. 可生物降解塑料行业及标准化现状浅析 [J]. 新材料产业, 2021(6): 21-25. doi: 10.19599/j.issn.1008-892x.2021.06.006 ZHU T G, YANG Y. Analysis of biodegradable plastics industry and its standardization status [J]. Advanced Materials Industry, 2021(6): 21-25(in Chinese). doi: 10.19599/j.issn.1008-892x.2021.06.006
[22] 张闯, 柳乃奎, 迟延娜, 等. 塑料制品在可持续发展中的前景: 可降解塑料的环境友好性 [J]. 健康教育与健康促进, 2019, 14(6): 486-489. ZHANG C, LIU N K, CHI Y N, et al. The prospect of plastic products in sustainable development: Environmental friendliness of degradable plastics [J]. Health Education and Health Promotion, 2019, 14(6): 486-489(in Chinese).
[23] HAIDER T P, VÖLKER C, KRAMM J, et al. Plastics of the future?the impact of biodegradable polymers on the environment and on society [J]. Angewandte Chemie International Edition, 2019, 58(1): 50-62. doi: 10.1002/anie.201805766
[24] GOEL V, LUTHRA P, KAPUR G S, et al. Biodegradable/bio-plastics: Myths and realities [J]. Journal of Polymers and the Environment, 2021, 29(10): 3079-3104. doi: 10.1007/s10924-021-02099-1
[25] de GISI S, GADALETA G, GORRASI G, et al. The role of (bio)degradability on the management of petrochemical and bio-based plastic waste [J]. Journal of Environmental Management, 2022, 310: 114769. doi: 10.1016/j.jenvman.2022.114769
[26] HOCKING P J. The classification, preparation, and utility of degradable polymers [J]. Journal of Macromolecular Science, Part C:Polymer Reviews, 1992, 32(1): 35-54. doi: 10.1080/15321799208018378
[27] BAGHERI A R, LAFORSCH C, GREINER A, et al. Fate of so-called biodegradable polymers in seawater and freshwater [J]. Global Challenges, 2017, 1(4): 1700048. doi: 10.1002/gch2.201700048
[28] SHRUTI V C, KUTRALAM-MUNIASAMY G. Bioplastics: Missing link in the era of Microplastics [J]. Science of the Total Environment, 2019, 697: 134139. doi: 10.1016/j.scitotenv.2019.134139
[29] 李嘉, 余松国, 沈林恩, 等. 微塑料对土壤吸附土霉素的影响初探 [J]. 环境化学, 2021, 40(10): 3133-3143. doi: 10.7524/j.issn.0254-6108.2020101504 LI J, YU S G, SHEN L N, et al. Influence of microplastics on sorption behaviors of oxytetracycline onto soils: A preliminary study [J]. Environmental Chemistry, 2021, 40(10): 3133-3143(in Chinese). doi: 10.7524/j.issn.0254-6108.2020101504
[30] 梁思嘉, 徐舒霞, 白利华, 等. 聚氯乙烯微塑料的原位光解老化及其对土壤微生物群落的影响 [J]. 环境化学, 2021, 40(12): 3681-3688. doi: 10.7524/j.issn.0254-6108.2021070704 LIANG S J, XU S X, BAI L H, et al. In-situ photo-aging of polyvinyl chloride microplastics and their effects on the soil microbial community [J]. Environmental Chemistry, 2021, 40(12): 3681-3688(in Chinese). doi: 10.7524/j.issn.0254-6108.2021070704
[31] 王英雪, 徐熳, 王立新, 等. 微塑料在哺乳动物的暴露途径、毒性效应和毒性机制浅述 [J]. 环境化学, 2021, 40(1): 41-54. doi: 10.7524/j.issn.0254-6108.2020053002 WANG Y X, XU M, WANG L X, et al. The exposure routes, organ damage and related mechanism of the microplastics on the mammal [J]. Environmental Chemistry, 2021, 40(1): 41-54(in Chinese). doi: 10.7524/j.issn.0254-6108.2020053002
[32] FOJT J, DAVID J, PŘIKRYL R, et al. A critical review of the overlooked challenge of determining micro-bioplastics in soil [J]. Science of the Total Environment, 2020, 745: 140975. doi: 10.1016/j.scitotenv.2020.140975
[33] LAMBERT S, WAGNER M. Formation of microscopic particles during the degradation of different polymers [J]. Chemosphere, 2016, 161: 510-517. doi: 10.1016/j.chemosphere.2016.07.042
[34] WEI X F, BOHLÉN M, LINDBLAD C, et al. Microplastics generated from a biodegradable plastic in freshwater and seawater [J]. Water Research, 2021, 198: 117123. doi: 10.1016/j.watres.2021.117123
[35] NAPPER I E, THOMPSON R C. Environmental deterioration of biodegradable, oxo-biodegradable, compostable, and conventional plastic carrier bags in the sea, soil, and open-air over a 3-year period [J]. Environmental Science & Technology, 2019, 53(9): 4775-4783.
[36] WEINSTEIN J E, DEKLE J L, LEADS R R, et al. Degradation of bio-based and biodegradable plastics in a salt marsh habitat: Another potential source of microplastics in coastal waters [J]. Marine Pollution Bulletin, 2020, 160: 111518. doi: 10.1016/j.marpolbul.2020.111518
[37] SINTIM H Y, FLURY M. Is biodegradable plastic mulch the solution to agriculture's plastic problem? [J]. Environmental Science & Technology, 2017, 51(3): 1068-1069.
[38] BRODHAGEN M, PEYRON M, MILES C, et al. Biodegradable plastic agricultural mulches and key features of microbial degradation [J]. Applied Microbiology and Biotechnology, 2015, 99(3): 1039-1056. doi: 10.1007/s00253-014-6267-5
[39] STLOUKAL P, VERNEY V, COMMEREUC S, et al. Assessment of the interrelation between photooxidation and biodegradation of selected polyesters after artificial weathering [J]. Chemosphere, 2012, 88(10): 1214-1219. doi: 10.1016/j.chemosphere.2012.03.072
[40] 张凯, 孙红文. (可降解)微塑料颗粒吸附有机污染物及对其生物有效性的影响 [J]. 环境化学, 2018, 37(3): 375-382. doi: 10.7524/j.issn.0254-6108.2018020509 ZHANG K, SUN H W. Adsorption of organic pollutants on (degradable) microplastics and the influences on their bioavailability [J]. Environmental Chemistry, 2018, 37(3): 375-382(in Chinese). doi: 10.7524/j.issn.0254-6108.2018020509
[41] SOROUDI A, JAKUBOWICZ I. Recycling of bioplastics, their blends and biocomposites: A review [J]. European Polymer Journal, 2013, 49(10): 2839-2858. doi: 10.1016/j.eurpolymj.2013.07.025
[42] SERRANO-RUÍZ H, MARTÍN-CLOSAS L, PELACHO A M. Application of an in vitro plant ecotoxicity test to unused biodegradable mulches [J]. Polymer Degradation and Stability, 2018, 158: 102-110. doi: 10.1016/j.polymdegradstab.2018.10.016
[43] SHEN M C, ZHANG Y X, ZHU Y, et al. Recent advances in toxicological research of nanoplastics in the environment: A review [J]. Environmental Pollution, 2019, 252: 511-521. doi: 10.1016/j.envpol.2019.05.102
[44] SINTIM H Y, BARY A I, HAYES D G, et al. In situ degradation of biodegradable plastic mulch films in compost and agricultural soils [J]. Science of the Total Environment, 2020, 727: 138668. doi: 10.1016/j.scitotenv.2020.138668
[45] SERRANO-RUÍZ H, ERAS J, MARTÍN-CLOSAS L, et al. Compounds released from unused biodegradable mulch materials after contact with water [J]. Polymer Degradation and Stability, 2020, 178: 109202. doi: 10.1016/j.polymdegradstab.2020.109202
[46] DOBARADARAN S, SCHMIDT T C, NABIPOUR I, et al. Characterization of plastic debris and association of metals with microplastics in coastline sediment along the Persian Gulf [J]. Waste Management, 2018, 78: 649-658. doi: 10.1016/j.wasman.2018.06.037
[47] DING W L, LI Z, QI R M, et al. Effect thresholds for the earthworm Eisenia fetida: Toxicity comparison between conventional and biodegradable microplastics [J]. Science of the Total Environment, 2021, 781: 146884. doi: 10.1016/j.scitotenv.2021.146884
[48] ČERNÁ T, PRAŽANOVÁ K, BENEŠ H, et al. Polycyclic aromatic hydrocarbon accumulation in aged and unaged polyurethane microplastics in contaminated soil [J]. Science of the Total Environment, 2021, 770: 145254. doi: 10.1016/j.scitotenv.2021.145254
[49] TORRES F G, DIOSES-SALINAS D C, PIZARRO-ORTEGA C I, et al. Sorption of chemical contaminants on degradable and non-degradable microplastics: Recent progress and research trends [J]. Science of the Total Environment, 2021, 757: 143875. doi: 10.1016/j.scitotenv.2020.143875
[50] LI R J, LIU Y, SHENG Y F, et al. Effect of prothioconazole on the degradation of microplastics derived from mulching plastic film: Apparent change and interaction with heavy metals in soil [J]. Environmental Pollution, 2020, 260: 113988. doi: 10.1016/j.envpol.2020.113988
[51] MBACHU O, JENKINS G, KAPARAJU P, et al. The rise of artificial soil carbon inputs: Reviewing microplastic pollution effects in the soil environment [J]. Science of the Total Environment, 2021, 780: 146569. doi: 10.1016/j.scitotenv.2021.146569
[52] LI C, MOORE-KUCERA J, LEE J, et al. Effects of biodegradable mulch on soil quality [J]. Applied Soil Ecology, 2014, 79: 59-69. doi: 10.1016/j.apsoil.2014.02.012
[53] KARAMANLIOGLU M, ROBSON G D. The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil [J]. Polymer Degradation and Stability, 2013, 98(10): 2063-2071. doi: 10.1016/j.polymdegradstab.2013.07.004
[54] BETTAS ARDISSON G, TOSIN M, BARBALE M, et al. Biodegradation of plastics in soil and effects on nitrification activity. A laboratory approach [J]. Frontiers in Microbiology, 2014, 5: 710.
[55] QI Y L, BERIOT N, GORT G, et al. Impact of plastic mulch film debris on soil physicochemical and hydrological properties [J]. Environmental Pollution, 2020, 266: 115097. doi: 10.1016/j.envpol.2020.115097
[56] QI Y L, OSSOWICKI A, YANG X M, et al. Effects of plastic mulch film residues on wheat rhizosphere and soil properties [J]. Journal of Hazardous Materials, 2020, 387: 121711. doi: 10.1016/j.jhazmat.2019.121711
[57] SANZ-LÁZARO C, CASADO-COY N, BELTRÁN-SANAHUJA A. Biodegradable plastics can alter carbon and nitrogen cycles to a greater extent than conventional plastics in marine sediment [J]. Science of the Total Environment, 2021, 756: 143978. doi: 10.1016/j.scitotenv.2020.143978
[58] ADHIKARI D, HIRAI T, KUBO K, et al. Water purification processing apparatus for processing e. g. domestic waste water, has circulation routes that are provided to make aerobic and anaerobic microbe process units to introduce and discharge process target water respectively. English, JP2016078009-A[P]. 2016-5-16.
[59] WITT U, EINIG T, YAMAMOTO M, et al. Biodegradation of aliphatic-aromatic copolyesters: Evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates [J]. Chemosphere, 2001, 44(2): 289-299. doi: 10.1016/S0045-6535(00)00162-4
[60] WANG F Y, ZHANG X Q, ZHANG S Q, et al. Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil [J]. Chemosphere, 2020, 254: 126791. doi: 10.1016/j.chemosphere.2020.126791
[61] SUN Y Z, CAO N, DUAN C X, et al. Selection of antibiotic resistance genes on biodegradable and non-biodegradable microplastics [J]. Journal of Hazardous Materials, 2021, 409: 124979. doi: 10.1016/j.jhazmat.2020.124979
[62] YANG W W, CHENG P, ADAMS C A, et al. Effects of microplastics on plant growth and arbuscular mycorrhizal fungal communities in a soil spiked with ZnO nanoparticles [J]. Soil Biology and Biochemistry, 2021, 155: 108179. doi: 10.1016/j.soilbio.2021.108179
[63] CHEN H P, WANG Y H, SUN X, et al. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function [J]. Chemosphere, 2020, 243: 125271. doi: 10.1016/j.chemosphere.2019.125271
[64] ZHOU J, GUI H, BANFIELD C C, et al. The microplastisphere: Biodegradable microplastics addition alters soil microbial community structure and function [J]. Soil Biology and Biochemistry, 2021, 156: 108211. doi: 10.1016/j.soilbio.2021.108211
[65] BOOTS B, RUSSELL C W, GREEN D S. Effects of microplastics in soil ecosystems: Above and below ground [J]. Environmental Science & Technology, 2019, 53(19): 11496-11506.
[66] SHEN M C, HUANG W, CHEN M, et al. (Micro)plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change [J]. Journal of Cleaner Production, 2020, 254: 120138. doi: 10.1016/j.jclepro.2020.120138
[67] SHEN M C, YE S J, ZENG G M, et al. Can microplastics pose a threat to ocean carbon sequestration? [J]. Marine Pollution Bulletin, 2020, 150: 110712. doi: 10.1016/j.marpolbul.2019.110712
[68] PALSIKOWSKI P A, ROBERTO M M, SOMMAGGIO L R D, et al. Ecotoxicity evaluation of the biodegradable polymers PLA, PBAT and its blends using Allium cepa as test organism [J]. Journal of Polymers and the Environment, 2018, 26(3): 938-945. doi: 10.1007/s10924-017-0990-9
[69] RYCHTER P, KAWALEC M, SOBOTA M, et al. Study of aliphatic-aromatic copolyester degradation in sandy soil and its ecotoxicological impact [J]. Biomacromolecules, 2010, 11(4): 839-847. doi: 10.1021/bm901331t
[70] MENG F R, YANG X M, RIKSEN M, et al. Response of common bean (Phaseolus vulgaris L. ) growth to soil contaminated with microplastics [J]. Science of the Total Environment, 2021, 755: 142516. doi: 10.1016/j.scitotenv.2020.142516
[71] QI Y L, YANG X M, PELAEZ A M, et al. Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth [J]. Science of the Total Environment, 2018, 645: 1048-1056. doi: 10.1016/j.scitotenv.2018.07.229
[72] HUERTA LWANGA E, GERTSEN H, GOOREN H, et al. Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae) [J]. Environmental Science & Technology, 2016, 50(5): 2685-2691.
[73] RODRIGUEZ-SEIJO A, LOURENÇO J, ROCHA-SANTOS T A P, et al. Histopathological and molecular effects of microplastics in Eisenia andrei Bouché [J]. Environmental Pollution, 2017, 220: 495-503. doi: 10.1016/j.envpol.2016.09.092
[74] LIAO Y L, YANG J Y. Microplastic serves as a potential vector for Cr in an in-vitro human digestive model [J]. Science of the Total Environment, 2020, 703: 134805. doi: 10.1016/j.scitotenv.2019.134805
[75] ZUO L Z, LI H X, LIN L, et al. Sorption and desorption of phenanthrene on biodegradable poly(butylene adipate co-terephtalate) microplastics [J]. Chemosphere, 2019, 215: 25-32. doi: 10.1016/j.chemosphere.2018.09.173
[76] JIANG M Y, HU L Y, LU A X, et al. Strong sorption of two fungicides onto biodegradable microplastics with emphasis on the negligible role of environmental factors [J]. Environmental Pollution, 2020, 267: 115496. doi: 10.1016/j.envpol.2020.115496
[77] TUBIĆ A, LONČARSKI M, MALETIĆ S, et al. Significance of chlorinated phenols adsorption on plastics and bioplastics during water treatment [J]. Water, 2019, 11(11): 2358. doi: 10.3390/w11112358
[78] GONG W W, JIANG M Y, HAN P, et al. Comparative analysis on the sorption kinetics and isotherms of fipronil on nondegradable and biodegradable microplastics [J]. Environmental Pollution, 2019, 254: 112927. doi: 10.1016/j.envpol.2019.07.095
[79] FAN X L, ZOU Y F, GENG N, et al. Investigation on the adsorption and desorption behaviors of antibiotics by degradable MPs with or without UV ageing process [J]. Journal of Hazardous Materials, 2021, 401: 123363. doi: 10.1016/j.jhazmat.2020.123363
[80] SUN Y, WANG X J, XIA S Q, et al. New insights into oxytetracycline (OTC) adsorption behavior on polylactic acid microplastics undergoing microbial adhesion and degradation [J]. Chemical Engineering Journal, 2021, 416: 129085. doi: 10.1016/j.cej.2021.129085
[81] ZHANG X L, XIA M L, SU X J, et al. Photolytic degradation elevated the toxicity of polylactic acid microplastics to developing zebrafish by triggering mitochondrial dysfunction and apoptosis [J]. Journal of Hazardous Materials, 2021, 413: 125321. doi: 10.1016/j.jhazmat.2021.125321