[1] 张月. 国内外阻燃剂市场分析 [J]. 精细与专用化学品, 2014, 22(8): 20-24. doi: 10.3969/j.issn.1008-1100.2014.08.004 ZHANG Y. Global market analysis of flame retardant [J]. Fine and Specialty Chemicals, 2014, 22(8): 20-24(in Chinese). doi: 10.3969/j.issn.1008-1100.2014.08.004
[2] LIU J, WANG Y F, JIANG B Q, et al. Degradation, metabolism, and bound-residue formation and release of Tetrabromobisphenol A in soil during sequential anoxic-oxic incubation [J]. Environmental Science & Technology, 2013, 47(15): 8348-8354.
[3] WANG S F, SUN F F, WANG Y F, et al. Formation, characterization, and mineralization of bound residues of tetrabromobisphenol A (TBBPA) in silty clay soil under oxic conditions [J]. Science of the Total Environment, 2017, 599/600: 332-339. doi: 10.1016/j.scitotenv.2017.04.243
[4] INOUE K, YOSHIDA S, NAKAYAMA S, et al. Development of stable isotope dilution quantification liquid chromatography-mass spectrometry method for estimation of exposure levels of bisphenol A, 4-tert-octylphenol, 4-nonylphenol, tetrabromobisphenol A, and pentachlorophenol in indoor air [J]. Archives of Environmental Contamination and Toxicology, 2006, 51(4): 503-508. doi: 10.1007/s00244-005-0236-z
[5] MATSUKAMI H, TUE N M, SUZUKI G, et al. Flame retardant emission from e-waste recycling operation in northern Vietnam: Environmental occurrence of emerging organophosphorus esters used as alternatives for PBDEs [J]. Science of the Total Environment, 2015, 514: 492-499. doi: 10.1016/j.scitotenv.2015.02.008
[6] YIN J F, MENG Z H, ZHU Y S, et al. Dummy molecularly imprinted polymer for selective screening of trace bisphenols in river [J]. Analytical Methods:Advancing Methods and Applications, 2011, 3(1): 173-180.
[7] MORRIS S, ALLCHIN C R, ZEGERS B N, et al. Distribution and fate of HBCD and TBBPA brominated flame retardants in North Sea estuaries and aquatic food webs [J]. Environmental Science & Technology, 2004, 38(21): 5497-5504.
[8] 陈玛丽, 刘青坡, 施华宏. 四溴双酚-A的甲状腺激素干扰活性研究进展 [J]. 环境与健康杂志, 2008, 25(10): 937-939. doi: 10.3969/j.issn.1001-5914.2008.10.039 CHEN M L, LIU Q P, SHI H H. Thyroid hormone disrupting activities of tetrabromobisphenol-A: A review [J]. Journal of Environment and Health, 2008, 25(10): 937-939(in Chinese). doi: 10.3969/j.issn.1001-5914.2008.10.039
[9] 杜青平, 彭润, 刘伍香, 等. 四溴双酚A对斑马鱼胚胎体内外发育的毒性效应 [J]. 环境科学学报, 2012, 32(3): 739-744. doi: 10.13671/j.hjkxxb.2012.03.005 DU Q P, PENG R, LIU W X, et al. Toxic effects of TBBPA on in vivo and in vitro developments in the zebrafish(Danio rerio) embryos [J]. Acta Scientiae Circumstantiae, 2012, 32(3): 739-744(in Chinese). doi: 10.13671/j.hjkxxb.2012.03.005
[10] EVANGELOPOULOS P, ARATO S, PERSSON H, et al. Reduction of brominated flame retardants (BFRs) in plastics from waste electrical and electronic equipment (WEEE) by solvent extraction and the influence on their thermal decomposition [J]. Waste Management, 2019, 94: 165-171. doi: 10.1016/j.wasman.2018.06.018
[11] ZHOU L C, JI L Q, MA P C, et al. Development of carbon nanotubes/CoFe2O4 magnetic hybrid material for removal of tetrabromobisphenol A and Pb(II) [J]. Journal of Hazardous Materials, 2014, 265: 104-114. doi: 10.1016/j.jhazmat.2013.11.058
[12] SANTOS M S F, ALVES A, MADEIRA L M. Chemical and photochemical degradation of polybrominated diphenyl ethers in liquid systems - A review [J]. Water Research, 2016, 88: 39-59. doi: 10.1016/j.watres.2015.09.044
[13] LIU Y M, CHEN S, QUAN X, et al. Nitrogen-doped nanodiamond rod array electrode with superior performance for electroreductive debromination of polybrominated diphenyl ethers [J]. Applied Catalysis B:Environmental, 2014, 154/155: 206-212. doi: 10.1016/j.apcatb.2014.02.028
[14] LIANG Z S, LI G Y, AN T C. Purifying, cloning and characterizing a novel dehalogenase from Bacillus sp. GZT to enhance the biodegradation of 2, 4, 6-tribromophenol in water [J]. Environmental Pollution, 2017, 225: 104-111. doi: 10.1016/j.envpol.2017.03.043
[15] MAO R, LI N, LAN H C, et al. Dechlorination of trichloroacetic acid using a noble metal-free graphene-Cu foam electrode via direct cathodic reduction and atomic H [J]. Environmental Science & Technology, 2016, 50(7): 3829-3837.
[16] KORSHIN G V, JENSEN M D. Electrochemical reduction of haloacetic acids and exploration of their removal by electrochemical treatment [J]. Electrochimica Acta, 2001, 47(5): 747-751. doi: 10.1016/S0013-4686(01)00755-1
[17] LI Y P, CAO H B, ZHANG Y. Reductive dehalogenation of haloacetic acids by hemoglobin-loaded carbon nanotube electrode [J]. Water Research, 2007, 41(1): 197-205. doi: 10.1016/j.watres.2006.08.020
[18] YANG L M, CHEN Z L, CUI D, et al. Ultrafine palladium nanoparticles supported on 3D self-supported Ni foam for cathodic dechlorination of florfenicol [J]. Chemical Engineering Journal, 2019, 359: 894-901. doi: 10.1016/j.cej.2018.11.099
[19] CHAPLIN B P, REINHARD M, SCHNEIDER W F, et al. Critical review of Pd-based catalytic treatment of priority contaminants in water [J]. Environmental Science & Technology, 2012, 46(7): 3655-3670.
[20] LOU Z M, XU J, ZHOU J S, et al. Insight into atomic H* generation, H2 evolution, and cathode potential of MnO2 induced Pd/Ni foam cathode for electrocatalytic hydrodechlorination [J]. Chemical Engineering Journal, 2019, 374: 211-220. doi: 10.1016/j.cej.2019.05.171
[21] SHARD A G, DHANAK V R, SANTONI A. Structures of chlorine on palladium (111) [J]. Surface Science, 2000, 445(2/3): 309-314.
[22] NING X M, LI Y H, DONG B Q, et al. Electron transfer dependent catalysis of Pt on N-doped carbon nanotubes: Effects of synthesis method on metal-support interaction [J]. Journal of Catalysis, 2017, 348: 100-109. doi: 10.1016/j.jcat.2017.02.011
[23] BOURIKAS K, VAKROS J, KORDULIS C, et al. Potentiometric mass titrations:   experimental and theoretical establishment of a new technique for determining the point of zero charge (PZC) of metal (hydr)oxides [J]. The Journal of Physical Chemistry B, 2003, 107(35): 9441-9451. doi: 10.1021/jp035123v
[24] de PEDRO Z M, CASAS J A, GOMEZ-SAINERO L M, et al. Hydrodechlorination of dichloromethane with a Pd/AC catalyst: Reaction pathway and kinetics [J]. Applied Catalysis B:Environmental, 2010, 98(1/2): 79-85.
[25] 陈诵英, 陈平, 李永旺, 等. 催化反应动力学[M]. 北京: 化学工业出版社, 2007. CHEN S Y, CHEN P, LI Y W, et al. Kinetics of catalytical reaction [M]. Beijing: Chemical Industry Press, 2007(in Chinese).
[26] BAEZA J A, CALVO L, GILARRANZ M A, et al. Catalytic behavior of size-controlled palladium nanoparticles in the hydrodechlorination of 4-chlorophenol in aqueous phase [J]. Journal of Catalysis, 2012, 293: 85-93. doi: 10.1016/j.jcat.2012.06.009
[27] GÓMEZ-SAINERO L M, SEOANE X L, FIERRO J L G, et al. Liquid-phase hydrodechlorination of CCl4 to CHCl3 on Pd/carbon catalysts: Nature and role of Pd active species [J]. Journal of Catalysis, 2002, 209(2): 279-288. doi: 10.1006/jcat.2002.3655
[28] MEZYK S P, COOPER W J, MADDEN K P, et al. Free radical destruction of N-nitrosodimethylamine in water [J]. Environmental Science & Technology, 2004, 38(11): 3161-3167.
[29] LI M H, SUN Y H, TANG Y Q, et al. Efficient removal and recovery of copper by liquid phase catalytic hydrogenation using highly active and stable carbon-coated Pt catalyst supported on carbon nanotube [J]. Journal of Hazardous Materials, 2020, 388: 121745. doi: 10.1016/j.jhazmat.2019.121745