[1] |
胡晋博, 李梦凯, 蔡恒文, 等. 不同光源UV/H2O2工艺降解四环素动力学[J]. 环境工程学报, 2021, 15(8): 2618-2626. doi: 10.12030/j.cjee.202012105
|
[2] |
詹露梦, 李文涛, 李梦凯, 等. 过流式UV/H2O2反应器中阿特拉津降解动力学的测定及模拟评估[J]. 环境工程学报, 2021, 15(3): 982-991. doi: 10.12030/j.cjee.202008067
|
[3] |
邵婉婷, 王文龙, 杜烨, 等. 双波长紫外线(VUV/UV)对有机污染物强化去除特性与原理[J]. 环境科学研究, 2021, 34(6): 1397-1406. doi: 10.13198/j.issn.1001-6929.2020.11.28
|
[4] |
FURATIAN L, MOHSENI M. Influence of major anions on the 185 nm advanced oxidation process - Sulphate, bicarbonate, and chloride[J]. Chemosphere, 2018, 201: 503-510. doi: 10.1016/j.chemosphere.2018.02.160
|
[5] |
WEEKS J L, MEABURN G, GORDON S. Absorption coefficients of liquid water and aqueous solutions in far ultraviolet[J]. Radiation Research, 1963, 19(3): 559-567. doi: 10.2307/3571475
|
[6] |
YE B, LIU Z Y, ZHU X Q, et al. Degradation of atrazine (ATZ) by ammonia/chlorine synergistic oxidation process[J]. Chemical Engineering Journal, 2021, 415(14): 128841.
|
[7] |
DE LAAT J, BERGER P, POINOT T, et al. Modeling the oxidation of atrazine by H2O2/UV. Estimation of kinetic parameters[J]. Ozone-Science & Engineering, 1997, 19(5): 395-408.
|
[8] |
JAYSON G G, PARSONS B J, SWALLOW A J. Some simple, highly reactive, inorganic chlorine derivatives in aqueous-solution - their formation using pulses of radiation and their role in mechanism of fricke dosimeter[J]. Journal of the Chemical Society-Faraday Transactions, 1973, 1(9): 1597-1607.
|
[9] |
ANASTASIO C, MATTHEW B M. A chemical probe technique for the determination of reactive halogen species in aqueous solution: Part 2 - chloride solutions and mixed bromide/chloride solutions[J]. Atmospheric Chemistry and Physics, 2006, 6: 2439-2451. doi: 10.5194/acp-6-2439-2006
|
[10] |
GUAN Y H, MA J, LI X C, et al. Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system[J]. Environmental Science & Technology, 2011, 45(21): 9308-9314.
|
[11] |
LIAO C H, KANG S F, WU F A. Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H2O2/UV process[J]. Chemosphere, 2001, 44(5): 1193-1200. doi: 10.1016/S0045-6535(00)00278-2
|
[12] |
GREBEL J E, PIGNATELLO J J, MITCH W A. Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters[J]. Environmental Science & Technology, 2010, 44(17): 6822-6828.
|
[13] |
YANG L X, LI M K, LI W T, et al. Bench- and pilot-scale studies on the removal of pesticides from water by VUV/UV process[J]. Chemical Engineering Journal, 2018, 342: 155-162. doi: 10.1016/j.cej.2018.02.075
|
[14] |
CHEN Y J, YE J S, CHEN Y, et al. Degradation kinetics, mechanism and toxicology of tris(2-chloroethyl) phosphate with 185 nm vacuum ultraviolet[J]. Chemical Engineering Journal, 2019, 356: 98-106. doi: 10.1016/j.cej.2018.09.007
|
[15] |
LONG L C, BU Y A, CHEN B Y, et al. Removal of urea from swimming pool water by UV/VUV: The roles of additives, mechanisms, influencing factors, and reaction products[J]. Water Research, 2019, 161: 89-97. doi: 10.1016/j.watres.2019.05.098
|
[16] |
CANONICA S, KOHN T, MAC M, et al. Photosensitizer method to determine rate constants for the reaction of carbonate radical with organic compounds[J]. Environmental Science & Technology, 2005, 39(23): 9182-9188.
|
[17] |
XIAO Y J, ZHANG L F, ZHANG W, et al. Comparative evaluation of iodoacids removal by UV/persulfate and UV/H2O2 processes[J]. Water Research, 2016, 102: 629-639. doi: 10.1016/j.watres.2016.07.004
|
[18] |
WOJNAROVITS L, TOTH T, TAKACS E, et al. Rate constants of carbonate radical anion reactions with molecules of environmental interest in aqueous solution: A review[J]. Science of the Total Environment, 2020, 717: 137219. doi: 10.1016/j.scitotenv.2020.137219
|
[19] |
SUN P Z, PAVLOSTATHIS S G, HUANG C H. Photodegradation of veterinary ionophore antibiotics under UV and solar irradiation[J]. Environmental Science & Technology, 2014, 48(22): 13188-13196.
|
[20] |
WANG Y F, RODDICK F A, FAN L H. Direct and indirect photolysis of seven micropollutants in secondary effluent from a wastewater lagoon[J]. Chemosphere, 2017, 185: 297-308. doi: 10.1016/j.chemosphere.2017.06.122
|
[21] |
HAN M Q, MOHSENI M. Impact of organic and inorganic carbon on the formation of nitrite during the VUV photolysis of nitrate containing water[J]. Water Research, 2019, 168: 115169.
|
[22] |
SERRANO M A, MOHSENI M. Temperature dependence of the absorbance of 185 nm photons by water and commonly occurring solutes and its influence on the VUV advanced oxidation process[J]. Environmental Science:Water Research & Technology, 2018, 4(9): 1303-1309.
|
[23] |
LESTER Y, SHARPLESS C M, MAMANE H, et al. Production of photooxidants by dissolved organic matter during UV water treatment[J]. Environmental Science & Technology, 2013, 47(20): 11726-11733.
|
[24] |
MAIZEL A C, REMUCAL C K. Molecular composition and photochemical reactivity of size-fractionated dissolved organic matter[J]. Environmental Science & Technology, 2017, 51(4): 2113-2123.
|
[25] |
DALRYMPLE R M, CARFAGNO A K, SHARPLESS C M. Correlations between dissolved organic matter optical properties and quantum yields of singlet oxygen and hydrogen peroxide[J]. Environmental Science & Technology, 2010, 44(15): 5824-5829.
|
[26] |
WENK J, von GUNTEN U, CANONICA S. Effect of dissolved organic matter on the transformation of contaminants induced by excited triplet states and the hydroxyl radical[J]. Environmental Science & Technology, 2011, 45(4): 1334-1340.
|
[27] |
GOLDSTONE J V, PULLIN M J, BERTILSSON S, et al. Reactions of hydroxyl radical with humic substances: bleaching, mineralization, and production of bioavailable carbon substrates[J]. Environmental Science & Technology, 2002, 36: 362-372.
|
[28] |
WESTERHOFF P, MEZYK S P, COOPER W J, et al. Electron pulse radiolysis determination of hydroxyl radical rate constants with suwannee river fulvic acid and other dissolved organic matter isolates[J]. Environmental Science & Technology, 2007, 41(13): 4640-4646.
|