[1] |
刘志长. 合流制排水管道沉积物的沉淀状况及控制技术研究[D]. 长沙: 湖南大学2011.
|
[2] |
熊磊, 边德军, 吴忌, 等. 长春市新区污水水质及水量变化规律分析[J]. 环境工程, 2017, 35(1): 36-40.
|
[3] |
侯巧玲, 张鸿, 洋王, 等. 某高新技术工业园区污水厂的设计与运行[J]. 给水排水, 2014, 30(22): 115-118.
|
[4] |
LI L Q, SHAN B Q, YIN C Q. Stormwater runoff pollution loads from an urban catchment with rainy climate in China[J]. Frontiers of Environmental Science & Engineering, 2012, 6(5): 672-677.
|
[5] |
ALAGHA O, ALLAZEM A, BUKHARI A A, et al. Suitability of SBR for wastewater treatment and reuse: Pilot-scale reactor operated in different anoxic conditions[J]. International Journal of Environmental Research and Public Health, 2020, 17(5): 1617. doi: 10.3390/ijerph17051617
|
[6] |
XIE E, XU X Y, LUO G Y. Study on a novel reactor of sludge process reduction for domestic sewage treatment[J]. Environmental Technology, 2013, 34: 9-12.
|
[7] |
邓仁健, 张金松, 杨靖波, 等. 高无机悬浮物进水对城市污水厂处理效果的冲击影响及机理研究[J]. 环境科学学报, 2013, 33(6): 1605-1610. doi: 10.13671/j.hjkxxb.2013.06.018
|
[8] |
张自杰. 排水工程: 下册[M]. 4版. 北京: 中国建筑工业出版社, 2000.
|
[9] |
边德军. 微压内循环多生物相反应器研制及性能研究[D]. 长春: 东北师范大学, 2015.
|
[10] |
万立国, 边德军, 卢文喜, 等. 微压气升循环流反应器与完全混合式反应器运行效果及微生物种群结构比较[J]. 环境污染与防治, 2018, 40(1): 11-14.
|
[11] |
边德军, 王喜超, 艾胜书, 等. 微压内循环反应器与序批式反应器的污染物去除及污泥特性比较[J]. 环境污染与防治, 2020, 42(11): 1315-1318.
|
[12] |
王帆, 么兴荣, 刘松林, 等. 有机负荷冲击对微压反应器的影响及调控策略[J]. 中国环境科学, 2021, 41(8): 3667-3675. doi: 10.3969/j.issn.1000-6923.2021.08.023
|
[13] |
边德军, 赵乐欣, 王宁, 等. 超长污泥龄对MPR工艺脱氮除磷效果的影响[J]. 环境工程学报, 2021, 15(5): 1735-1743. doi: 10.12030/j.cjee.202010091
|
[14] |
BIAN D J, ZHOU D D, HUO M X, et al. Improving oxygen dissolution and distribution in a bioreactor with enhanced simultaneous COD and nitrogen removal by simply introducing micro-pressure and swirl[J]. Applied Microbiology & Biotechnology, 2015, 99(20): 8741-8749.
|
[15] |
HUANG X, DONG W Y, WANG H J, et al. Biological nutrient removal and molecular biological characteristics in an anaerobic-multistage anaerobic/oxic (A-MAO) process to treat municipal wastewater[J]. Bioresource Technology, 2017, 241: 969-978. doi: 10.1016/j.biortech.2017.05.161
|
[16] |
吉芳英, 周卫威, 裴玲, 等. 细微泥沙对活性污泥系统的影响及其恢复特征[J]. 环境科学研究, 2015, 28(2): 326-332. doi: 10.13198/j.issn.1001-6929.2015.02.22
|
[17] |
苏高强, 彭永臻. 基于ORP的控制策略在废水生物处理中的应用[J]. 工业水处理, 2011, 31(8): 11-15. doi: 10.3969/j.issn.1005-829X.2011.08.003
|
[18] |
高景峰, 彭永臻, 王淑莹, 等. 以DO、ORP、pH控制SBR法的脱氮过程[J]. 中国给水排水, 2001(4): 6-11. doi: 10.3321/j.issn:1000-4602.2001.04.002
|
[19] |
王涛, 徐跃飞, 陈贵生, 等. ORP用于优化改良型Carrousel氧化沟脱氮的研究[J]. 中国给水排水, 2012, 28(21): 16-19. doi: 10.3969/j.issn.1000-4602.2012.21.005
|
[20] |
ZHA X, MA J, LU X W, et al. Use of a low-cost and energy-efficient device for treating low-strength wastewater at low temperatures focusing on nitrogen removal and microbial community[J]. Science of the Total Environment, 2020, 722: 137916. doi: 10.1016/j.scitotenv.2020.137916
|
[21] |
KUBA T, SMDLDERS G, VANLOOSDRECHT M C M, et al. Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor[J]. Water Science and Technology, 1993, 27(56): 241-252.
|
[22] |
HU M, WANG X H, WEN X H, XIA Y. Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis[J]. Bioresource Technology, 2012, 117: 72-79. doi: 10.1016/j.biortech.2012.04.061
|
[23] |
SHI X Q, NG K K, LI X R, et al. Investigation of intertidal wetland sediment as a novel inoculation source for anaerobic saline wastewater treatment[J]. Environmental Science & Technology, 2015, 49(10): 6231-6239.
|
[24] |
ZHANG Y T, DING K, YRJÄLÄ K, et al. Introduction of broadleaf species into monospecific cunninghamia lanceolata plantations changed the soil Acidobacteria subgroups composition and nitrogen-cycling gene abundances[J]. Plant and Soil, 2021, 467(12): 1-18.
|
[25] |
王光华, 刘俊杰, 于镇华, 等. 土壤酸杆菌门细菌生态学研究进展[J]. 生物技术通报, 2016, 32(02): 14-20.
|
[26] |
MIURA Y, WATANABE Y, OKABE S. Significance of chloroflexi in performance of submerged membrane bioreactors (MBR) treating municipal wastewater[J]. Environmental Science & Technology, 2007, 41(22): 7787-7794.
|
[27] |
SENGUN I Y, KARABIYIKLI S. Importance of acetic acid bacteria in food industry[J]. Food Control, 2011, 22(5): 647-656. doi: 10.1016/j.foodcont.2010.11.008
|
[28] |
FU C, YUE X D, SHI X Q, et al. Membrane fouling between a membrane bioreactor and a moving bed membrane bioreactor: Effects of solids retention time[J]. Chemical Engineering Journal, 2017: 397-408.
|
[29] |
CHEN M X, CHEN Y W, DONG S Y, et al. Mixed nitrifying bacteria culture under different temperature dropping strategies: Nitrification performance, activity, and community[J]. Chemosphere, 2018, 195: 800-809. doi: 10.1016/j.chemosphere.2017.12.129
|
[30] |
XING W, LI J, LI D, et al. Stable-isotope probing reveals the activity and function of autotrophic and heterotrophic denitrifiers in nitrate removal from organic-limited wastewater[J]. Environmental Science & Technology, 2018, 52(14): 7867-7875.
|
[31] |
XIE C H, YOLATA A. Reclassification of [Flavobacterium] ferrugineum as Terrimonas ferruginea gen. nov. , comb. nov., and description of Terrimonas lutea sp. nov. , isolated from soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(5): 1117-1121. doi: 10.1099/ijs.0.64115-0
|
[32] |
MERGAERT J, CNOCLAERT M C, SWINGS J. Thermomonas fusca sp. nov. and Thermomonas brevis sp. nov. , two mesophilic species isolated from a denitrification reactor with poly(epsilon-caprolactone) plastic granules as fixed bed, and emended description of the genus Thermomonas[J]. International Journal of Systematic and Evolutionary Microbiology, 2003, 53(6): 1961-1966. doi: 10.1099/ijs.0.02684-0
|
[33] |
TERASHIMA M, YAMA A, SATO M, et al. Culture-dependent and -independent identification of polyphosphate-accumulating Dechloromonas spp. predominating in a full-scale oxidation ditch wastewater treatment plant[J]. Microbes and Environments, 2016, 31(4).
|