[1] BOUABIDI Z B, El-NAAS M H, ZHANG Z. Immobilization of microbial cells for the biotreatment of wastewater: A review[J]. Environmental Chemistry Letters, 2019, 17(1): 241-257. doi: 10.1007/s10311-018-0795-7
[2] PALMER S, NOONE G, HOYLAND G. A review of physical relationships between form and function in wastewater biotreatment and a new theory relating activated sludge and biofilm systems behaviour[J]. Water and Environment Journal, 2021, 35(1): 148-157. doi: 10.1111/wej.12614
[3] 刘子娟, 王寅义, 徐肖甜, 等. 剩余污泥碱性发酵产酸及脱水性能研究[J]. 中国给水排水, 2022, 38(3): 92-98. doi: 10.19853/j.zgjsps.1000-4602.2022.03.015
[4] WU Y, SONG K, JIANG Y, et al. Effect of thermal hydrolysis sludge supernatant as carbon source for biological denitrification with pilot-scale two-stage anoxic/oxic process and nitrogen balance model establishment[J]. Biochemical Engineering Journal, 2018, 139: 132-138. doi: 10.1016/j.bej.2018.08.013
[5] YANG S, WANG Q, ZHANG T, et al. Biological nitrogen removal using the supernatant of ozonized sludge as extra carbon source[J]. Ozone:science & engineering, 2011, 33(5): 410-416.
[6] LEE M J, KIM T H, YOO G Y, et al. Reduction of sewage sludge by ball mill pretreatment and Mn catalytic ozonation[J]. KSCE Journal of Civil Engineering, 2010, 14(5): 693-697. doi: 10.1007/s12205-010-0934-6
[7] 蔡辰, 杨婉, 杨东海, 等. 水热处理高含固污泥的无害化效能和资源属性影响[J]. 环境科学学报, 2020, 40(10): 3719-3725. doi: 10.13671/j.hjkxxb.2020.0382
[8] 赵薇, 陈男, 刘永杰, 等. 以超声波破解剩余污泥为碳源强化污水脱氮[J]. 环境工程, 2019, 37(3): 44-49.
[9] 刘艳芳, 王凌霄, 马骏, 等. 剩余污泥臭氧化过程中磷的释放及形态转化[J]. 环境科学学报, 2019, 39(09): 3039-3044. doi: 10.13671/j.hjkxxb.2019.0133
[10] KIM T H, NAM Y K, PARK C, et al. Carbon source recovery from waste activated sludge by alkaline hydrolysis and gamma-ray irradiation for biological denitrification[J]. Bioresource technology, 2009, 100(23): 5694-5699. doi: 10.1016/j.biortech.2009.06.049
[11] ATAY Ş, AKBAL F. Classification and effects of sludge disintegration technologies integrated into sludge handling units: an overview[J]. Clean-Soil, Air, Water, 2016, 44(9): 1198-1213. doi: 10.1002/clen.201400084
[12] 唐心漪, 陈翔宇, 肖本益, 柳荣展. 剩余污泥热碱处理及其对污泥厌氧消化的强化研究进展[J]. 环境工程, 2022, 40(5): 218-226. doi: 10.13205/j.hjgc.202205031
[13] 代勤, 张文哲, 于潘芬, 等. 热、热碱处理对污泥溶胞和溶解性有机物的影响[J]. 环境科学, 2018, 39(5): 2283-2288.
[14] 徐慧敏, 秦卫华, 何国富, 等. 超声联合热碱技术促进剩余污泥破解的参数优化[J]. 中国环境科学, 2017, 37(9): 3431-3436. doi: 10.3969/j.issn.1000-6923.2017.09.029
[15] 王开乐, 周集体, 田天, 等. 剩余污泥碱解液用作低C/N合成氨废水反硝化碳源研究[J]. 环境工程, 2021, 39(12): 31-37.
[16] 曾庆洋, 伍健东, 周兴求, 等. 石灰投加比对污泥低温干燥特性及冷凝液性质的影响[J]. 环境工程学报, 2017, 11(10): 5603-5608. doi: 10.12030/j.cjee.201611158
[17] 张博, 赵益华, 陶君, 等. CaO对高浓度污泥厌氧消化性能的影响机理及动力学分析[J]. 环境工程, 2021, 39(4): 140-146. doi: 10.13205/j.hjgc.202104022
[18] LIU B, JIN R, LIU G, et al. Effect on sludge disintegration by EDTA-enhanced thermal-alkaline treatment[J]. Water Environment Research, 2020, 92(1): 42-50. doi: 10.1002/wer.1156
[19] WU Y, JIANG Y, SONG K. Carbon source recovery from waste activated sludge by low-temperature thermal hydrolysis process[J]. Journal of Environmental Engineering, 2020, 146(1): 04019098. doi: 10.1061/(ASCE)EE.1943-7870.0001631
[20] 林珊伊, 孙德安, 朱明瑞, 等. 芬顿与氧化钙联合处理填埋库污泥的力学特性[J]. 环境工程学报, 2020, 14(10): 2813-2822. doi: 10.12030/j.cjee.201912027
[21] 王均凤, 李志宝. 二水硫酸钙和氢氧化钙在高浓NaOH-KOH-H2O体系中的溶解度和稳定性[J]. 化工进展, 2009, 28(S2): 413.
[22] 朱赵冉, 黄显怀, 唐玉朝, 等. 低速搅拌球磨破解剩余污泥高效释放碳源[J]. 中国给水排水, 2021, 37(13): 1-6. doi: 10.19853/j.zgjsps.1000-4602.2021.13.001
[23] YAO S, MA F, LIANG B, et al. Mechanism investigation of excess sludge disintegration by stirred ball mill-utilized transmission electron microscope observation and peptidoglycan concentration determination[J]. Waste and Biomass Valorization, 2021, 12(12): 6543-6554. doi: 10.1007/s12649-021-01478-y
[24] GONZALEZ A, HENDRIKS A, VAN LIER J B, et al. Pre-treatments to enhance the biodegradability of waste activated sludge: Elucidating the rate limiting step[J]. Biotechnology Advances, 2018, 36(5): 1434-1469. doi: 10.1016/j.biotechadv.2018.06.001
[25] VALLOM J K, MCLOUGHLIN A J. Lysis as a factor in sludge flocculation[J]. Water Research, 1984, 18(12): 1523-1528. doi: 10.1016/0043-1354(84)90127-1
[26] BIGGS C A, LANT P A. Activated sludge flocculation: on-line determination of floc size and the effect of shear[J]. Water Research, 2000, 34(9): 2542-2550. doi: 10.1016/S0043-1354(99)00431-5
[27] WANG R, TANG A P. Influence of the dissolution laws of N, P on the activated sludge by ozone oxidation[C]. Applied Mechanics and Materials. 2013, 295: 1215-1221.
[28] LI Y, HU Y, WANG G, et al. Screening pretreatment methods for sludge disintegration to selectively reclaim carbon source from surplus activated sludge[J]. Chemical Engineering Journal, 2014, 255: 365-371. doi: 10.1016/j.cej.2014.06.034
[29] 刘博文, 金若菲, 兰兵兵, 等. 热碱-EDTA耦合法强化污泥破解及效果分析[J]. 环境工程学报, 2020, 14(1): 217-223. doi: 10.12030/j.cjee.201902110
[30] 李海兵, 刘志英, 林承顺, 等. 微波预处理对剩余污泥生化处理的影响[J]. 环境工程学报, 2018, 12(4): 1254-1260. doi: 10.12030/j.cjee.201709173
[31] ZHANG Y, ZHANG P, GUO J, et al. Spectroscopic analysis and biodegradation potential study of dissolved organic matters in sewage sludge treated with high-pressure homogenization[J]. Bioresource Technology, 2013, 135: 616-621. doi: 10.1016/j.biortech.2012.09.034
[32] TANG Y, XIE H, SUN J, et al. Alkaline thermal hydrolysis of sewage sludge to produce high-quality liquid fertilizer rich in nitrogen-containing plant-growth-promoting nutrients and biostimulants[J]. Water Research, 2022, 211: 118036. doi: 10.1016/j.watres.2021.118036
[33] 艾小凡, 王鹤立, 陈祥龙. 地下水硝酸盐污染生物修复中的亚硝态氮积累研究[J]. 环境工程, 2014, 32(1): 33-36. doi: 10.13205/j.hjgc.201401009