[1] |
ZUO Z Q, REN D H, QIAO L G, et al. Rapid dynamic quantification of sulfide generation flux in spatially heterogeneous sediments of gravity sewers[J]. Water Research, 2021, 203: 117494. doi: 10.1016/j.watres.2021.117494
|
[2] |
LI W K, ZHENG T L, MA Y Q, et al. Current status and future prospects of sewer biofilms: their structure, influencing factors, and substance transformations[J]. Science of the Total Environment, 2019, 695: 133815. doi: 10.1016/j.scitotenv.2019.133815
|
[3] |
EIJO-RÍO E, PETIT-BOIX A, VILLALBA G, et al. Municipal sewer networks as sources of nitrous oxide, methane and hydrogen sulphide emissions: a review and case studies[J]. Journal of Environmental Chemical Engineering, 2015, 3(3): 2084-2094. doi: 10.1016/j.jece.2015.07.006
|
[4] |
MOHANAKRISHNAN J, GUTIERREZ O, SHARMA K R, et al. Impact of nitrate addition on biofilm properties and activities in rising mainsewers[J]. Water Research, 2009, 43(17): 4225-4237. doi: 10.1016/j.watres.2009.06.021
|
[5] |
ZHANG L H, SCHRYVER P D, GUSSEME B D, et al. Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review[J]. Water Research, 2008, 42(1-2): 1-12. doi: 10.1016/j.watres.2007.07.013
|
[6] |
LIU Y W, NI B J, SHARMA K R, et al. Methane emission from sewers[J]. Science of the Total Environment, 2015, 524-525: 40-51. doi: 10.1016/j.scitotenv.2015.04.029
|
[7] |
SUN J, HU S, SHARMA K R, et al. Stratified microbial structure and activity in sulfide-and methane-producing anaerobic sewer biofilms[J]. Applied Environmental Microbiology, 2014, 80(22): 7042-7052. doi: 10.1128/AEM.02146-14
|
[8] |
CHAOSAKUL T, KOOTTATEP T, POLPRASERT C, et al. A model for methane production in sewers[J]. Environmental Science Health A, 2014, 49(11): 1316-1321. doi: 10.1080/10934529.2014.910071
|
[9] |
SCHREIBER L, HOLLER T, KNITTEL K, et al. Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the anme-2 clade[J]. Environmental Microbiology, 2010, 12(8): 2327-2340.
|
[10] |
郝晓地. 可持续污水-废物处理技术[M]. 北京: 中国建筑工业出版社, 2006: 279-286
|
[11] |
MUYZER G, STAMS A J M. The ecology and biotechnology of sulphate-reducing bacteria[J]. Nature Reviews Microbiology, 2008, 6: 441-454. doi: 10.1038/nrmicro1892
|
[12] |
AUGUET O, PIJUAN M, BORREGO C M, et al. Control of sulfide and methane production in anaerobic sewer systems by means of downstream nitrite dosage[J]. Science of the Total Environment, 2016, 550: 1116-1125. doi: 10.1016/j.scitotenv.2016.01.130
|
[13] |
OVIEDO E R, JOHNSON D, SHIPLEY H. Evaluation of hydrogen sulphide concentration and control in a sewer system[J]. Environmental Technology, 2011, 33(10): 1207-1215.
|
[14] |
ZUO Z Q, CHANG J, LU Z S. Hydrogen sulfide generation and emission in urban sanitary sewer in China: What factor plays the critical role?[J]. Environmental Science Water Research & Technology, 2019, 5: 839-848.
|
[15] |
SHORT M D, DAIKELER A, PETERS G M, et al. Municipal gravity sewers: An unrecognised source of nitrous oxide[J]. Science of the Total Environment, 2014, 468-469: 211-218. doi: 10.1016/j.scitotenv.2013.08.051
|
[16] |
CHEN H B, ZENG L, WANG D B, et al. Recent advances in nitrous oxide production and mitigation in wastewater treatment[J]. Water Research, 2020: 184.
|
[17] |
KIM S W, MIYAHARA M, FUSHINOBU S, et al. Nitrous oxide emission from nitrifying activated sludge dependent on denitrification by ammonia-oxidizing bacteria[J]. Bioresource Technology, 2010, 101: 3958-3963. doi: 10.1016/j.biortech.2010.01.030
|
[18] |
LAW Y Y, YE L, PAN Y T, et al. Nitrous oxide emissions from wastewater treatment processes[J]. Philosophical Transactions of The Royal Society B, 2012, 367: 1265-1277. doi: 10.1098/rstb.2011.0317
|
[19] |
SCHREIBER F, WUNDERLIN P, UDERT M K. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies[J]. Frontiers in Microbiology, 2012, 3: 372.
|
[20] |
CARANTO J D, VILBERT A C, LANCASTER K M. Nitrosomonas europaea cytochrome p460 is a direct link 886 between nitrification and nitrous oxide emission[J]. National Acad Science, 2016, 113: 14704-14709. doi: 10.1073/pnas.1611051113
|
[21] |
UPADHYAY A K, HOOPER A B, HENDRICH M P. NO reductase activity of the tetraheme cytochrome c554 of nitrosomonas europaea[J]. American Chemistry Society, 2006, 128: 4330-4337. doi: 10.1021/ja055183+
|
[22] |
STEIN L. Surveying N2O-producing pathways in bacteria[J]. Methods in Enzymology, 2011, 486: 131-152.
|
[23] |
WUNDERLIN P, MOHN J, JOSS A, et al. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions[J]. Water Research, 2012, 46(4): 1027-1037. doi: 10.1016/j.watres.2011.11.080
|
[24] |
SOLER-JOFRA A, PEREZ J, VAN LOOSDRECHT M C M. Hydroxylamine and the nitrogen cycle: a review[J]. Water Research, 2021: 190.
|
[25] |
ZHANG G J, PANG Y, ZHOU Y C, et al. Effect of dissolved oxygen on N2O release in the sewer system during controlling hydrogen sulfide by nitrate dosing[J]. Science of the Total Environment, 2022, 816: 151581. doi: 10.1016/j.scitotenv.2021.151581
|
[26] |
CASCIOTTI K L, WARD B B. Dissimilatory nitrite reductase genes from autotrophic ammonia-oxidizing bacteria[J]. Applied and Environmental Microbiology, 2001, 67(5): 2213-2221. doi: 10.1128/AEM.67.5.2213-2221.2001
|
[27] |
POTH M, POCHT D D. 15N kinetic analysis of N2O production by nitrosomonas europaea: an examination of nitrifier denitrification[J]. Applied and Environmental Microbiology, 1985, 49(5): 1134-1141. doi: 10.1128/aem.49.5.1134-1141.1985
|
[28] |
NI B, YUAN Z G, CHANDRAN K, et al. Evaluating four mathematical models for nitrous oxide production by autotrophic ammonia-oxidizing bacteria[J]. Biotechnology and Bioengineering, 2013, 110(1): 153-163. doi: 10.1002/bit.24620
|
[29] |
YU R, KAMPSCHREYR M J, VAN LOOSDRECHT M C, et al. Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia[J]. Environmental Science and Technology, 2010, 44(4): 1313-1319. doi: 10.1021/es902794a
|
[30] |
JIANG G, SHARMA K R, YUAN Z. Effects of nitrate dosing onmethanogenic activity in a sulfide-producing sewer biofilmreactor[J]. Water Research, 2013, 47(5): 1783-1792. doi: 10.1016/j.watres.2012.12.036
|
[31] |
JIANG G, SHARMA K R, GUISASOLA A, et al. Sulfur transformation in rising main sewers receiving nitrate dosage[J]. Water Research, 2010, 43(17): 4430-4440.
|
[32] |
BENTZEN G, SMIT A T, BENNETT D, et al. Controlled dosing of nitrate for prevention of H2S in a sewer network and the effects on the subsequent treatment processese[J]. Water Science and Technology, 1995, 31(7): 293-302. doi: 10.2166/wst.1995.0245
|
[33] |
AUGUET O, PIJUAN M, GUASCH-BALCELLS H, et al. Implications of downstream nitrate dosage in anaerobic sewers to control sulfide and methane emissions[J]. Water Research, 2015, 68: 522-532. doi: 10.1016/j.watres.2014.09.034
|
[34] |
GANIGUÉ R, YUAN Z. Impact of oxygen injection on CH4 and N2O emissions from rising main sewers[J]. Journal of Environmental Management, 2014, 144: 279-285. doi: 10.1016/j.jenvman.2014.04.023
|
[35] |
JIANG G M, GUTIERREZ O, YUAN Z G, et al. Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems[J]. Water Research, 2010, 44(14): 4241-4251. doi: 10.1016/j.watres.2010.05.030
|
[36] |
HAVEMAN S A, GREENE E A, STILWELL C P, et al. Physiological and gene expression analysis of inhibition of desulfovibrio vulgaris hildenborough by nitrite[J]. Journal of Bacteriology, 2004, 186(23): 7944-7950. doi: 10.1128/JB.186.23.7944-7950.2004
|
[37] |
PARK K, LEE H, PHELAN S, et al. Mitigation strategies of hydrogen sulphide emission in sewer networks: a review[J]. International Biodeterioration & Biodegradation, 2014, 95: 251-261.
|
[38] |
ZHANG L, KELLER J, YUAN Z. Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing[J]. Water Research, 2009, 43(17): 4123-4132. doi: 10.1016/j.watres.2009.06.013
|
[39] |
YAN X F, SUN J, DAI X H. Rapid and strong biocidal effect of ferrate on sulfidogenic and methanogenic sewer biofilms[J]. Water Research, 2020, 169: 115208. doi: 10.1016/j.watres.2019.115208
|
[40] |
YANG K, LI Z H, ZHANG H Y. Municipal wastewater phosphorus removal by coagulation[J]. Environmental technology, 2010, 31(6): 601-609. doi: 10.1080/09593330903573223
|
[41] |
GUTIERREZ O, SUDARJANTO G, REN G, et al. Assessment of ph shock as a method for controlling sulfide and methane formation in pressure main sewer systems[J]. Water Research, 2014, 48: 569-578. doi: 10.1016/j.watres.2013.10.021
|
[42] |
GUTIERREZ O, PARK D, SHARMA K R, et al. Effects of long-term ph elevation on the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms[J]. Water Research, 2009, 43(9): 2549-2557. doi: 10.1016/j.watres.2009.03.008
|
[43] |
HYNES R K, KNOWLES R. Production of nitrous oxide by Nitrosomonas europaea: effects of acelylene, ph, oxygen[J]. Canadian Journal of Microbiology, 1984, 30(11): 1397-1404. doi: 10.1139/m84-222
|
[44] |
THÖRN M, SÖRENSSON F. Variation of nitrous oxide formation in the denitrification basin in a wastewater treatment plant with nitrogen removal[J]. Water Research, 1996, 30(6): 1543-1547. doi: 10.1016/0043-1354(95)00327-4
|
[45] |
PAN Y, YE L, NI B, et al. Effect of ph on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers[J]. Water Research, 2012, 46: 4832-4840. doi: 10.1016/j.watres.2012.06.003
|
[46] |
JIANG G M, GUTIERREZ O, YUAN Z G. The strong biocidal effect of free nitrous acid on anaerobic sewer biofilms[J]. Water Research, 2011, 45(12): 3735-3743. doi: 10.1016/j.watres.2011.04.026
|