Hao X D, Chen G H, Yuan Z G. Water in China[J]. Water Research, 2020, 169:115256
Tian Z Y, Peter K T, Gipe A D, et al. Suspect and nontarget screening for contaminants of emerging concern in an urban estuary[J]. Environmental Science & Technology, 2020, 54(2):889-901
Han D M, Currell M J, Cao G L. Deep challenges for China's war on water pollution[J]. Environmental Pollution, 2016, 218:1222-1233
Wang J Y, Da L J, Song K, et al. Temporal variations of surface water quality in urban, suburban and rural areas during rapid urbanization in Shanghai, China[J]. Environmental Pollution, 2008, 152(2):387-393
Hartung T. Toxicology for the twenty-first century[J]. Nature, 2009, 460(7252):208-212
Zhang L L, Li Q, Chen L, et al. Toxicity of surface water from Huangpu River to luminous bacteria (Vibrio qinghaiensis SP. Q67) and zebrafish (Danio rerio) embryos[J]. Ecotoxicology and Environmental Safety, 2015, 112:137-143
王志浩, 彭颖, 王萍萍, 等. 基于斑马鱼毒理基因组学的化学品测试技术研究进展[J]. 生态毒理学报, 2018, 13(5):1-10 Wang Z H, Peng Y, Wang P P, et al. Advances of chemical testing methodologies based on zebrafish toxicogenomics[J]. Asian Journal of Ecotoxicology, 2018, 13(5):1-10(in Chinese)
Xia P, Zhang X W, Zhang H X, et al. Benchmarking water quality from wastewater to drinking waters using reduced transcriptome of human cells[J]. Environmental Science & Technology, 2017, 51(16):9318-9326
Wang P P, Xia P, Yang J H, et al. A reduced transcriptome approach to assess environmental toxicants using zebrafish embryo test[J]. Environmental Science & Technology, 2018, 52(2):821-830
张家敏, 彭颖, 方文迪, 等. 有害结局路径(AOP)框架在水体复合污染监测研究中的应用[J]. 生态毒理学报, 2017, 12(1):1-14 Zhang J M, Peng Y, Fang W D, et al. Application of adverse outcome pathways framework in monitoring of toxic chemicals from aquatic environments[J]. Asian Journal of Ecotoxicology, 2017, 12(1):1-14(in Chinese)
Yang K, Han X L. Lipidomics:Techniques, applications, and outcomes related to biomedical sciences[J]. Trends in Biochemical Sciences, 2016, 41(11):954-969
Ibáñez C, Mouhid L, Reglero G, et al. Lipidomics insights in health and nutritional intervention studies[J]. Journal of Agricultural and Food Chemistry, 2017, 65(36):7827-7842
Aminov Z, Haase R F, Pavuk M, et al. Analysis of the effects of exposure to polychlorinated biphenyls and chlorinated pesticides on serum lipid levels in residents of Anniston, Alabama[J]. Environmental Health, 2013, 12:108
Lai K P, Lee J C Y, Wan H T, et al. Effects of in utero PFOS exposure on transcriptome, lipidome, and function of mouse testis[J]. Environmental Science & Technology, 2017, 51(15):8782-8794
Zhao F R, Wan Y, Zhao H Q, et al. Levels of blood organophosphorus flame retardants and association with changes in human sphingolipid homeostasis[J]. Environmental Science & Technology, 2016, 50(16):8896-8903
Ortiz-Villanueva E, Navarro-Martín L, Jaumot J, et al. Metabolic disruption of zebrafish (Danio rerio) embryos by bisphenol A. An integrated metabolomic and transcriptomic approach[J]. Environmental Pollution, 2017, 231(Pt 1):22-36
Wu K, Luo Z, Hogstrand C, et al. Zn stimulates the phospholipids biosynthesis via the pathways of oxidative and endoplasmic reticulum stress in the intestine of freshwater teleost yellow catfish[J]. Environmental Science & Technology, 2018, 52(16):9206-9214
Jungnickel H, Potratz S, Baumann S, et al. Identification of lipidomic biomarkers for coexposure to subtoxic doses of benzopyrene and cadmium:The toxicological cascade biomarker approach[J]. Environmental Science & Technology, 2014, 48(17):10423-10431
Zhen H J, Ekman D R, Collette T W, et al. Assessing the impact of wastewater treatment plant effluent on downstream drinking water-source quality using a zebrafish (Danio rerio) liver cell-based metabolomics approach[J]. Water Research, 2018, 145:198-209
Li Y H, Darwish W S, Chen Z, et al. Identification of lead-produced lipid hydroperoxides in human HepG2 cells and protection using rosmarinic and ascorbic acids with a reference to their regulatory roles on Nrf2-Keap1 antioxidant pathway[J]. Chemico-Biological Interactions, 2019, 314:108847
Ye G Z, Ding D X, Gao H, et al. Comprehensive metabolic responses of HepG2 cells to fine particulate matter exposure:Insights from an untargeted metabolomics[J]. Science of the Total Environment, 2019, 691:874-884
Wang Z M, Shao D G, Westerhoff P. Wastewater discharge impact on drinking water sources along the Yangtze River (China)[J]. Science of the Total Environment, 2017, 599-600:1399-1407
Teng Q, Ekman D R, Huang W L, et al. Impacts of 17α-ethynylestradiol exposure on metabolite profiles of zebrafish (Danio rerio) liver cells[J]. Aquatic Toxicology, 2013, 130-131:184-191
Han X L. Lipidomics for studying metabolism[J]. Nature Reviews Endocrinology, 2016, 12(11):668-679
Donnelly K L, Smith C I, Schwarzenberg S J, et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease[J]. The Journal of Clinical Investigation, 2005, 115(5):1343-1351
Mei X B, Sui Q, Lyu S G, et al. Pharmaceuticals and personal care products in the urban river across the megacity Shanghai:Occurrence, source apportionment and a snapshot of influence of rainfall[J]. Journal of Hazardous Materials, 2018, 359:429-436
Sun R, Wu M H, Tang L, et al. Perfluorinated compounds in surface waters of Shanghai, China:Source analysis and risk assessment[J]. Ecotoxicology and Environmental Safety, 2018, 149:88-95
Liu S, Liu X R, Liu M, et al. Levels, sources and risk assessment of PAHs in multi-phases from urbanized river network system in Shanghai[J]. Environmental Pollution, 2016, 219:555-567
Jiang L, Hu X L, Yin D Q, et al. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China[J]. Chemosphere, 2011, 82(6):822-828
Ress C. Mechanisms of intrahepatic triglyceride accumulation[J]. World Journal of Gastroenterology, 2016, 22(4):1664
McGill M R, Li F, Sharpe M R, et al. Circulating acylcarnitines as biomarkers of mitochondrial dysfunction after acetaminophen overdose in mice and humans[J]. Archives of Toxicology, 2014, 88(2):391-401
Kawano Y, Cohen D E. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease[J]. Journal of Gastroenterology, 2013, 48(4):434-441
Feng S M, Gan L, Yang C S, et al. Effects of stigmasterol and β-sitosterol on nonalcoholic fatty liver disease in a mouse model:A lipidomic analysis[J]. Journal of Agricultural and Food Chemistry, 2018, 66(13):3417-3425
Liu Y, Wang W, Shui G H, et al. CDP-diacylglycerol synthetase coordinates cell growth and fat storage through phosphatidylinositol metabolism and the insulin pathway[J]. PLoS Genetics, 2014, 10(3):e1004172
Gibert Y, Yoganantharajah P, McGee S, et al. Bisphenol A, but not bisphenol S, exposure increases lipid deposition by acting on the PI3K pathway in vivo[J]. The FASEB Journal, 2019, 33(S1):DOI:10.1096/fasebj.2019.33.1_supplement.488.7
Hannun Y A, Obeid L M. Many ceramides[J]. Journal of Biological Chemistry, 2011, 286(32):27855-27862
Nikolova-Karakashian M. Alcoholic and non-alcoholic fatty liver disease:Focus on ceramide[J]. Advances in Biological Regulation, 2018, 70:40-50
Hu C X, Zhou Y, Feng J, et al. Untargeted lipidomics reveals specific lipid abnormalities in nonfunctioning human pituitary adenomas[J]. Journal of Proteome Research, 2020, 19(1):455-463
Zhang H N, Shao X J, Zhao H Z, et al. Integration of metabolomics and lipidomics reveals metabolic mechanisms of triclosan-induced toxicity in human hepatocytes[J]. Environmental Science & Technology, 2019, 53(9):5406-5415