[1] |
SALTHAMMER T, MENTESE S, MARUTZKY R. Formaldehyde in the indoor environment[J]. Chemical Reviews, 2010, 110(4): 2536-2572. doi: 10.1021/cr800399g
|
[2] |
李省吾, 吴晓航, 黄荣珠, 林建标. 室内空气中甲醛污染去除技术进展研究[J]. 广东化工, 2022, 49(8): 148-149. doi: 10.3969/j.issn.1007-1865.2022.08.047
|
[3] |
徐倩, 曲振平. 介孔氧化硅材料负载Au、Ag催化剂及其甲醛催化氧化性能研究[D]. 大连: 大连理工大学, 2021.
|
[4] |
关圣楠, 张琦. 锰基催化剂催化氧化甲醛脱除的研究[D]. 合肥: 中国科学技术大学, 2021.
|
[5] |
ZHANG G X, SUN Z M, DUAN Y W, et al. Synthesis of nano-TiO2/diatomite composite and its photocatalytic degradation of gaseous formaldehyde[J]. Applied Surface Science, 2017, 412: 105-112. doi: 10.1016/j.apsusc.2017.03.198
|
[6] |
LI X, QIAN X R, AN X H, et al. Preparation of a novel composite comprising biochar skeleton and “chrysanthemum” g-C3N4 for enhanced visible light photocatalytic degradation of formaldehyde[J]. Applied Surface Science, 2019, 487: 1262-1270. doi: 10.1016/j.apsusc.2019.05.195
|
[7] |
ZHANG G K, XIONG Q, WEI X, et al. Synthesis of bicrystalline TiO2 supported sepiolite fibers and their photocatalytic activity for degradation of gaseous formaldehyde[J]. Applied Clay Science, 2014, 102: 231-237. doi: 10.1016/j.clay.2014.10.001
|
[8] |
MALAYERI M, HAGHIGHAT F, LEE C S. Modeling of volatile organic compounds degradation by photocatalytic oxidation reactor in indoor air: A review[J]. Building and Environment, 2019, 154: 309-323. doi: 10.1016/j.buildenv.2019.02.023
|
[9] |
YANG Y, LI X J, CHEN J T, et al. Effect of doping mode on the photocatalytic activities of Mo/TiO2[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2004, 163(3): 517-522. doi: 10.1016/j.jphotochem.2004.02.008
|
[10] |
PAN X Y, XU Y J. Defect-mediated growth of noble-metal (Ag, Pt, and Pd) nanoparticles on TiO2 with oxygen vacancies for photocatalytic redox reactions under visible light[J]. The Journal of Physical Chemistry C, 2013, 117(35): 17996-18005. doi: 10.1021/jp4064802
|
[11] |
LI J, ZHANG M, LI Q Y, et al. Enhanced visible light activity on direct contact Z-scheme g-C3N4-TiO2 photocatalyst[J]. Applied Surface Science, 2017, 391: 184-193. doi: 10.1016/j.apsusc.2016.06.145
|
[12] |
HUANG Q, WANG P, FAN Y Z, et al. Synthesis and photocatalytic activity of N-doped BixTi1-xO2 photocatalysts under energy saving lamp illumination[J]. Indoor and Built Environment, 2017, 26(6): 785-795. doi: 10.1177/1420326X16641177
|
[13] |
HUANG Y F, WEI Y L, WANG J, et al. Controllable fabrication of Bi2O3/TiO2 heterojunction with excellent visible-light responsive photocatalytic performance[J]. Applied Surface Science, 2017, 423: 119-130. doi: 10.1016/j.apsusc.2017.06.158
|
[14] |
HAMDI A, FERRARIA A M, BOTELHO DO REGO A M, et al. Bi–Y doped and co-doped TiO2 nanoparticles: Characterization and photocatalytic activity under visible light irradiation[J]. Journal of Molecular Catalysis A:Chemical, 2013, 380: 34-42. doi: 10.1016/j.molcata.2013.09.005
|
[15] |
TIAN H, HE J H, ZHANG X D, et al. Facile synthesis of Porous manganese oxide K-OMS-2 materials and their catalytic activity for formaldehyde oxidation[J]. Microporous and Mesoporous Materials, 2011, 138(1/2/3): 118-122.
|
[16] |
何小云, 葛笑, 宋留名, 等. 室温下MnOx/HZSM-5催化氧化甲醛的性能和机理分析[J]. 材料工程, 2021, 49(1): 144-152.
|
[17] |
YANG P, YANG S S, SHI Z N, et al. Deep oxidation of chlorinated VOCs over CeO2-based transition metal mixed oxide catalysts[J]. Applied Catalysis B:Environmental, 2015, 162: 227-235. doi: 10.1016/j.apcatb.2014.06.048
|
[18] |
TANG X F, LI Y G, HUANG X M, et al. MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcinations temperature[J]. Applied Catalysis B:Environmental, 2006, 62(3/4): 265-273.
|
[19] |
TANG X F, CHEN J L, HUANG X M, et al. Pt/MnOx CeO2 catalysts for the complete oxidation of formaldehyde at ambient temperature[J]. Applied Catalysis B:Environmental, 2008, 81(1/2): 115-121.
|
[20] |
ZHANG Y, CHEN M X, ZHANG Z X, et al. Simultaneously catalytic decomposition of formaldehyde and ozone over manganese cerium oxides at room temperature: Promotional effect of relative humidity on the MnCeOx solid solution[J]. Catalysis Today, 2019, 327: 323-333. doi: 10.1016/j.cattod.2018.04.027
|
[21] |
SEKINE Y, NISHIMURA A. Removal of formaldehyde from indoor air by passive type air-cleaning materials[J]. Atmospheric Environment, 2001, 35(11): 2001-2007. doi: 10.1016/S1352-2310(00)00465-9
|
[22] |
陶涛, 肖瑶, 胡宇欣, 等. MnCeOx/凹凸棒土催化剂的制备、表征及常温催化氧化性能[J]. 功能材料, 2020, 12(51): 12001-12008.
|
[23] |
WANG T, YAN X Q, ZHAO S S, et al. Preparation, characterization and photocatalytic activity of three-dimensionally ordered mesoporous /macroporous TiO2 microspheres[J]. Journal of Molecular Catalysis, 2014, 28(4): 359-366.
|
[24] |
黄琼, 白梦天, 任超, 等. Mn基金属氧化物催化剂常温催化氧化甲醛[J]. 中国环境科学, 2018, 38(1): 103-111. doi: 10.3969/j.issn.1000-6923.2018.01.013
|
[25] |
LI H J, QI G S, TAN A, et al. Low-temperature oxidation of ethanol over a Mn0.6Ce0.4O2 mixed oxide[J]. Applied Catalysis B:Environmental, 2011, 103(1/2): 54-61.
|
[26] |
HUANG Q, YE J, SI H, et al. Differences of characteristics and performance with Bi3+ and Bi2O3 doping over TiO2 for photocatalytic oxidation under visible light[J]. Catalysis Letters, 2020, 150: 1098-1110. doi: 10.1007/s10562-019-03017-w
|
[27] |
朱立才, 袁中直, 李伟善. 现场紫外-可见吸收光谱研究电解二氧化锰的还原过程[J]. 电化学, 2004, 10(2): 168-174. doi: 10.13208/j.electrochem.2004.02.008
|
[28] |
CHEN B B, SHI C, CROKER M, et al. Catalytic removal of formaldehyde at room temperature over supported gold catalysts[J]. Applied Catalysis B: Environmental, 2013, 132–133: 245-255.
|
[29] |
庞光龙. MnOx基催化剂上甲醛室温催化氧化反应的研究 [D]. 北京: 北京理工大学, 2015.
|
[30] |
朱杰, 孙月吟, 顾名扬, 等. TiO2负载MnFeOx催化剂的制备及常温催化氧化甲醛性能研究[J]. 功能材料, 2022, 53(4): 4011-4019.
|
[31] |
LIU F, RONG S P, ZHANG P Y, et al. One-step synthesis of nanocarbon-decorated MnO2 with superior activity for indoor formaldehyde removal at room temperature[J]. Applied Catalysis B:Environmental, 2018, 235: 158-167. doi: 10.1016/j.apcatb.2018.04.078
|
[32] |
SUN D, WAGEH S, Al-GHAMDI A A, et al. Pt/C@MnO2 Composite hierarchical hollow microspheres for catalytic formaldehyde decomposition at room temperature[J]. Applied Surface Science, 2019, 466: 301-308. doi: 10.1016/j.apsusc.2018.10.044
|
[33] |
李妍, 张舸, 蒋贞. 锐钛矿型TiO2吸附甲醛影响因素的模拟与实验研究[J]. 现代化工, 2019, 39(4): 207-210.
|
[34] |
段宝庆, 丁雅萍, 陈英文等. 铈基催化剂上CVOCs催化研究进展[J]. 现代化工, 2017, 37(12): 24-27. doi: 10.16606/j.cnki.issn0253-4320.2017.12.006
|
[35] |
张萍, 许丽, 王莉. 水热法合成二氧化钛纳米管的晶型与形貌控制的研究[J]. 当代化工, 2018, 47(5): 893-896. doi: 10.13840/j.cnki.cn21-1457/tq.2018.05.005
|
[36] |
YUAN Z Y, SU B L. Titanium oxide nanotubes, nanofibers and nanowires[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2004, 241(3): 173-183.
|
[37] |
赵红花, 马树平. 负载型 TiO2光催化降解含酚废水的研究[J]. 兰州理工大学学报, 2007, 33(1): 74-78.
|
[38] |
朱杰. MnFeOx氧化物催化剂常温催化氧化低浓度HCHO性能研究[D]. 南京: 南京信息工程大学, 2022.
|