[1] |
ZHU H T, SONG L Y, LI K, et al. Low-temperature SCR catalyst development and industrial applications in China[J]. Catalysts, 2022, 12(3): 341. doi: 10.3390/catal12030341
|
[2] |
ISABELLA NOVA, ENRICO TRONCONI, Kinetic study of the NO/NO2-NH3 SCR reactions over a V2O5–WO3/TiO2 commercial catalyst for the after treatment of Diesel engines exhausts[J]. Journal of Environmental Chemical Engineering, 2009, 42(26): 183-190.
|
[3] |
ZHANG S T, PANG L, CHEN Z, et al. Cu/SSZ-13 and Cu/SAPO-34 catalysts for deNOx in diesel exhaust: Current status, challebges, and future perspectives[J]. Applied Catalysts A:General, 2020, 607: 117855. doi: 10.1016/j.apcata.2020.117855
|
[4] |
LIU W J, LONG Y F, LIU S N, et al. Promotional effect of Ce in NH3-SCO and NH3-SCR reactions over Cu-Ce/SCR catalysts[J]. Journal of Industrial and Engineering Chemistry, 2022, 107: 197-206. doi: 10.1016/j.jiec.2021.11.045
|
[5] |
LIU J, GUO R T, LI M Y, et al. Enhancement of the SO2 resistance of Mn/TiO2 SCR catalyst by Eu modification: A mechanism study[J]. Fuel, 2018, 223: 385-393. doi: 10.1016/j.fuel.2018.03.062
|
[6] |
ZHANG X L, LV S S, ZHANG X C, et al. Improvement of the activity and SO2 tolerance of Sb-modified Mn/PG catalysts for NH3-SCR at a low temperature[J]. Journal of Environmental Sciences, 2021, 101: 1-15. doi: 10.1016/j.jes.2020.07.027
|
[7] |
魏永林, 陈红萍, 侯欣辛等, Fe-Mn/TiO2低温NH3-SCR脱硝催化剂的SO2中毒机理[J]. 功能材料, 2021, 52(4): 4132-4139.
|
[8] |
魏永林, 陈红萍, 侯欣辛, 等, 低温脱硝催化剂抗硫性能研究[J]. 河北冶金, 2021(2): 1-6.
|
[9] |
杨旭, 陈红萍, 齐雪. 脱硝催化剂的硫中毒机理研究[J]. 现代化工, 2018, 38(2): 20-24.
|
[10] |
HOU X X, CHEN H P, LIANG Y H, et al. La modified Fe–Mn/TiO2 catalysts to improve SO2 resistance for NH3-SCR at low-temperature[J]. Catalysis Surveys from Asia, 2020, 24: 291-299. doi: 10.1007/s10563-020-09309-1
|
[11] |
CHEN C M, GAO Y, LIU S T et al. Review on the latest developments in modified vanadium-titanium-based SCR catalysts[J]. Chinese Journal of Catalysis, 2018, 39(8): 1347-1365. doi: 10.1016/S1872-2067(18)63090-6
|
[12] |
LIU T K, WEI L Q, YAO Y Y, et al. La promoted CuO-MnOx catalysts for optimizing SCR performance of NO with CO[J]. Applied Surface Science, 2021, 546: 148971. doi: 10.1016/j.apsusc.2021.148971
|
[13] |
WANG Y, LI G G, ZHANG S Q, et al. Promoting effect of Ce and Mn addition on Cu-SSZ-39 zeolites for NH3-SCR reaction: Activity, hydrothermal stability, and mechanism study[J]. Chemical Engineering Journal, 2020, 393: 124782. doi: 10.1016/j.cej.2020.124782
|
[14] |
ZHANG K, WANG J J, GUAN P F, et al. Low-temperature NH3-SCR catalytic characteristic of Ce-Fe solid solutions based on rare earth concentrate[J]. Materials Research Bulletin, 2020, 128: 110871.
|
[15] |
WU Z B, JIN R B, LIU Y, et al. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature[J]. Catalysis Communications, 2008, 9(13): 2217-2220. doi: 10.1016/j.catcom.2008.05.001
|
[16] |
NIU Y Q, SHANG T, HUI S E, et al. Synergistic removal of NO and N2O in low-temperature SCR process with MnOx/Ti based catalyst doped with Ce and V[J]. Fuel, 2016, 185: 316-322. doi: 10.1016/j.fuel.2016.07.122
|
[17] |
MARBERGER A, FERRI D, RENTSCH D, et al. Effect of SiO2 on co-impregnated V2O5/WO3/TiO2 catalysts for the selective catalytic reduction of NO with NH3[J]. Catalysis Today, 2019, 320: 123-132. doi: 10.1016/j.cattod.2017.11.037
|
[18] |
LI Y, ZHANG Z, ZHAO X, et al. Effects of Nb-modified CeVO4 to form surface Ce-O-Nb bonds on improving low-temperature NH3-SCR deNO activity and resistance to SO2 & H2O[J]. Fuel, 2023, 331: 125799. doi: 10.1016/j.fuel.2022.125799
|
[19] |
CHEN G, XU J, YU H, et al. Effect of the non-thermal plasma treatment on the structure and SCR activity of vanadium-based catalysts[J]. Chemical Engineering Journal, 2020, 380: 122286. doi: 10.1016/j.cej.2019.122286
|
[20] |
SALAZAR M, CRUZ A, CADENA A A, et al. Effect of the electronic state of Ti on M-doped TiO2 nanoparticles (M=Zn, Ga or Ge) with high photocatalytic activities: A experimental and DFT molecular study[J]. Material Science in Semiconductor Processing, 2017, 58: 8-14. doi: 10.1016/j.mssp.2016.10.050
|
[21] |
ZHANG W G, LV D. Preparation and characterization of Ge/TiO2 one-dimensional photonic crystal with low infrared-emissivity in the 8~14 μm band[J]. Materials Research Bulletin, 2020, 124: 110747. doi: 10.1016/j.materresbull.2019.110747
|
[22] |
李泽清. 低温抗硫抗碱钒基脱硝催化剂的研究[D]. 唐山: 华北理工大学, 2022.
|
[23] |
侯欣辛. 助剂对Fe-Mn催化剂低温抗硫脱硝活性的影响[D]. 唐山: 华北理工大学, 2020.
|
[24] |
MUHAMMAD S A, NASRUDIN A R, PANDEY A K, et al. Improved electron transfer of TiO2 based dye sensitized solar cells using Ge as sintering aid[J]. Optik, 2018, 157: 134-140. doi: 10.1016/j.ijleo.2017.11.073
|
[25] |
FRANCOIS G, CHRISTOPHE G, NOLVEN G, et al. Individual amounts of Lewis and Brønsted acid sites on metal oxides from NH3 adsorption equilibrium: Case of TiO2 based solids[J]. Catalysis Today, 2020, 168: 259-268.
|
[26] |
INHAK S, HWANGHO L, SE W J, et al. Understanding the dynamic behavior of acid sites on TiO2-supported vanadia catalysts via operando DRIFTS under SCR-relevant conditions[J]. Journal of Catalysis, 2020, 382: 269-279. doi: 10.1016/j.jcat.2019.12.041
|
[27] |
GAO Y, WU X D, RAN R, et al. Effects of MoOx on dispersion of vanadia and low-temperature NH3-SCR activity of titania supported catalysts: Liquid acidity and steric hindrance[J]. Applied Surface Science, 2022, 585: 152710-152719. doi: 10.1016/j.apsusc.2022.152710
|
[28] |
ZHANG D J, MA Z R, WANG B D, et al. Effect of manganese and/or ceria loading on V2O5-MoO3/TiO2 NH3 selective catalytic reduction catalyst[J]. Applied Surface Science, 2013, 379(23): 305-312.
|
[29] |
CHEN L, LI J H, GE M F, et al. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3[J]. Chemical Engineering Journal, 2011, 170(26): 531-539.
|
[30] |
MUHAMMAD S M, PULLUR A K, HEON P H. Novel sulfation effect on low-temperature activity enhancement of CeO2-added Sb-V2O5/TiO2 catalyst for NH3-SCR[J]. Applied Catalysis B:Environmental, 2014, 152(26): 28-37.
|
[31] |
MITRAN G, NEATU F, PAVEL O D, et al. Behavior of molybdenum-vanadium mixed oxides in selective oxidation and disproportionation of toluene[J]. Materials, 2019, 12(5): 748-756. doi: 10.3390/ma12050748
|
[32] |
GONG P J, XIE J L, CHENG X K, et al. Elucidate the promotional effects of Sn on Ce-Ti catalysts for NH3-SCR activity[J]. Journal of the Energy Institute, 2020, 93(3): 1053-1063. doi: 10.1016/j.joei.2019.09.006
|
[33] |
LIU X S, SUI Z M, CEHN H F, et al. Structures and catalytic performances of Me/SAPO-34 (Me=Mn, Ni, Co) catalysts for low-tem perature SCR of NOx by ammonia[J]. Journal of Environmental Sciences, 2021, 104: 137-149. doi: 10.1016/j.jes.2020.11.018
|
[34] |
LI C, SRIRIM V, LIU Z Y, et al. Sequentially prepared Mo-V-Based SCR catalyst for simultaneous HgO oxidation and NO reduction[J]. Applied Catalysis A:General, 2021, 614: 12.
|
[35] |
DONG W K, KWANG H P, HEON P H, et al. The role of molybdenum on the enhanced performance and SO2 resistance of V/Mo-Ti catalysts for NH3-SCR[J]. Applied Surface Science, 2019, 481: 1167-1177. doi: 10.1016/j.apsusc.2019.03.118
|
[36] |
HU W S, ZHANG S, QI X, et al. Mechanistic investigation of NH3 oxidation over V-0.5Ce(SO4)2/Ti NH3-SCR catalyst[J]. Catalysis Communications, 2018, 112: 1-4. doi: 10.1016/j.catcom.2018.04.010
|