[1] 亓昕, 代嫣然, 王飞华, 等. 人工湿地去除特殊污染物的研究进展[J]. 环境科学与技术, 2017, 40(S1): 119-124. QI X, DAI Y R, WANG F H, et al. Research progress of constructed wetlands for treatment of particular pollutants[J]. Environmental Science & Technology, 2017, 40(Sup 1): 119-124 (in Chinese).
[2] 陈婧, 栾天罡, 罗丽娟. 烷基化多环芳烃的细菌降解研究进展 [J]. 环境化学, 2022, 9: 31-45. doi: 10.7524/j.issn.0254-6108.2020090801 CHEN J, LUAN T, LUO L. Research progress in bacterial degradation of alkylated polycyclic aromatic hydrocarbons [J]. Environmental Chemistry, 2022, 9: 31-45(in Chinese). doi: 10.7524/j.issn.0254-6108.2020090801
[3] MENG Y, LIU X H, LU S Y, et al. A review on occurrence and risk of polycyclic aromatic hydrocarbons (PAHs) in lakes of China [J]. Science of the Total Environment, 2019, 651: 2497-2506. doi: 10.1016/j.scitotenv.2018.10.162
[4] SU X, YUAN J, LU Z J, et al. An enlarging ecological risk: Review on co-occurrence and migration of microplastics and microplastic-carrying organic pollutants in natural and constructed wetlands [J]. Science of the Total Environment, 2022, 837: 155772. doi: 10.1016/j.scitotenv.2022.155772
[5] FOUNTOULAKIS M S, TERZAKIS S, KALOGERAKIS N, et al. Removal of polycyclic aromatic hydrocarbons and linear alkylbenzene sulfonates from domestic wastewater in pilot constructed wetlands and a gravel filter [J]. Ecological Engineering, 2009, 35(12): 1702-1709. doi: 10.1016/j.ecoleng.2009.06.011
[6] ZHAO C C, XU J T, SHANG D W, et al. Application of constructed wetlands in the PAH remediation of surface water: A review [J]. The Science of the Total Environment, 2021, 780: 146605. doi: 10.1016/j.scitotenv.2021.146605
[7] JIAO X C, XU F L, DAWSON R, et al. Adsorption and absorption of polycyclic aromatic hydrocarbons to rice roots [J]. Environmental Pollution, 2007, 148(1): 230-235. doi: 10.1016/j.envpol.2006.10.025
[8] ROPER J C, SARKAR J M, DEC J, et al. Enhanced enzymatic removal of chlorophenols in the presence of co-substrates [J]. Water Research, 1995, 29(12): 2720-2724. doi: 10.1016/0043-1354(95)00101-P
[9] CHEN X H, HU Z, XIE H J, et al. Priming effects of root exudates on the source-sink stability of benzo[a]pyrene in wetlands: A microcosm experiment [J]. Journal of Hazardous Materials, 2022, 429: 128364. doi: 10.1016/j.jhazmat.2022.128364
[10] WANG Y D, OUYANG W, LIN C Y, et al. Higher fine particle fraction in sediment increased phosphorus flux to estuary in restored Yellow River Basin [J]. Environmental Science & Technology, 2021, 55(10): 6783-6790.
[11] HAN) WENG Z, van ZWIETEN L, SINGH B P, et al. Biochar built soil carbon over a decade by stabilizing rhizodeposits [J]. Nature Climate Change, 2017, 7(5): 371-376. doi: 10.1038/nclimate3276
[12] GAO Y, WU S C, YU X Z, et al. Dissipation gradients of phenanthrene and pyrene in the rice rhizosphere [J]. Environmental Pollution, 2010, 158(8): 2596-2603. doi: 10.1016/j.envpol.2010.05.012
[13] CHENG Y, DING J, LIANG X Y, et al. Fractions transformation and dissipation mechanism of dechlorane plus in the rhizosphere of the soil-plant system [J]. Environmental Science & Technology, 2020, 54(11): 6610-6620.
[14] KANG F X, CHEN D S, GAO Y Z, et al. Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam. ) [J]. BMC Plant Biology, 2010, 10: 210. doi: 10.1186/1471-2229-10-210
[15] SIVARAM A K, LOGESHWARAN P, SUBASHCHANDRABOSE S R, et al. Comparison of plants with C3 and C4 carbon fixation pathways for remediation of polycyclic aromatic hydrocarbon contaminated soils [J]. Scientific Reports, 2018, 8: 2100. doi: 10.1038/s41598-018-20317-0
[16] SOLÍS-DOMINGUEZ F A, WHITE S A, HUTTER T B, et al. Response of key soil parameters during compost-assisted phytostabilization in extremely acidic tailings: Effect of plant species [J]. Environmental Science & Technology, 2012, 46(2): 1019-1027.
[17] TORN M S, TRUMBORE S E, CHADWICK O A, et al. Mineral control of soil organic carbon storage and turnover [J]. Nature, 1997, 389(6647): 170-173. doi: 10.1038/38260
[18] KEILUWEIT M, BOUGOURE J J, NICO P S, et al. Mineral protection of soil carbon counteracted by root exudates [J]. Nature Climate Change, 2015, 5(6): 588-595. doi: 10.1038/nclimate2580
[19] ZHALNINA K, LOUIE K B, HAO Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly [J]. Nature Microbiology, 2018, 3(4): 470-480. doi: 10.1038/s41564-018-0129-3