[1] |
徐西蒙, 陈远翔. 水体重金属-有机物复合污染的协同处理技术研究进展[J]. 化工环保, 2020, 40(5): 467-473. doi: 10.3969/j.issn.1006-1878.2020.05.002
|
[2] |
徐舟影, 孟发科, 吕意超, 等. 抗生素与重金属复合污染废水处理的研究进展[J]. 环境科学研究, 2021, 34(11): 2686-2695.
|
[3] |
JIA S Y, YANG Z, YANG W B, et al. Removal of Cu(II) and tetracycline using an aromatic rings-functionalized chitosan-based flocculant: enhanced interaction between the flocculant and the antibiotic[J]. Chemical Engineering Journal, 2016, 283: 495-503. doi: 10.1016/j.cej.2015.08.003
|
[4] |
YANG Z, JIA S Y, ZHANG T T, et al. How heavy metals impact on flocculation of combined pollution of heavy metals-antibiotics: a comparative study[J]. Separation and Purification Technology, 2015, 149: 398-406. doi: 10.1016/j.seppur.2015.06.018
|
[5] |
QIAN M, WU H, WANG J, et al. Occurrence of trace elements and antibiotics in manure-based fertilizers from the Zhejiang Province of China[J]. Science of the Total Environment, 2016, 559: 174-181. doi: 10.1016/j.scitotenv.2016.03.123
|
[6] |
马芳. 小麦秸秆及其纤维素的改性与吸附水体中Pb(Ⅱ)和As(Ⅴ)的机理研究[D]. 咸阳: 西北农林科技大学, 2017.
|
[7] |
YUAN L, YAN M, HUANG Z, et al. Influences of pH and metal ions on the interactions of oxytetracycline onto nano-hydroxyapatite and their co-adsorption behavior in aqueous solution[J]. Journal of Colloid and Interface Science, 2019, 541: 101-113. doi: 10.1016/j.jcis.2019.01.078
|
[8] |
LU H, ZHU Z, ZHANG H, et al. Simultaneous removal of arsenate and antimonate in simulated and practical water samples by adsorption onto Zn/Fe layered double hydroxide[J]. Chemical Engineering Journal, 2015, 276: 365-375. doi: 10.1016/j.cej.2015.04.095
|
[9] |
YU J, XIONG J, CHENG B, et al. Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders[J]. Journal of Solid State Chemistry, 2005, 178(6): 1968-1972. doi: 10.1016/j.jssc.2005.04.003
|
[10] |
桑丰, 刚淑艳, 李佳, 等. 改性玉米秸秆对海水中Cr(VI)的吸附应用[J]. 河北渔业, 2022(04): 1-5+13. doi: 10.3969/j.issn.1004-6755.2022.04.001
|
[11] |
CHEN S H, YUE Q Y, GAO B Y, et al. Removal of Cr(VI) from aqueous solution using modified corn stalks: Characteristic, equilibrium, kinetic and thermodynamic study[J]. Chemical Engineering Journal, 2011, 168(2): 909-917. doi: 10.1016/j.cej.2011.01.063
|
[12] |
SUN N, WEN X, YAN C J. Adsorption of mercury ions from wastewater aqueous solution by amide functionalized cellulose from sugarcane bagasse[J]. International Journal of Biological Macromolecules, 2018, 108: 1199-1206. doi: 10.1016/j.ijbiomac.2017.11.027
|
[13] |
胡冬英. 两种季铵化纤维素的制备、表征及应用研究[D]. 哈尔滨: 东北林业大学, 2017.
|
[14] |
YANG Y, ZHENG L, ZHANG T, et al. Adsorption behavior and mechanism of sulfonamides on phosphonic chelating cellulose under different pH effects[J]. Bioresource Technology, 2019, 288: 121510. doi: 10.1016/j.biortech.2019.121510
|
[15] |
HOKKANEN S, BHATNAGAR A, SILLANPÄÄ M. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity[J]. Water Research, 2016, 91: 156-173. doi: 10.1016/j.watres.2016.01.008
|
[16] |
LIU M, JIA L, ZHAO Z, et al. Fast and robust lead (II) removal from water by bioinspired amyloid lysozyme fibrils conjugated with polyethyleneimine (PEI)[J]. Chemical Engineering Journal, 2020, 390: 124667. doi: 10.1016/j.cej.2020.124667
|
[17] |
ZHAO F, REPO E, YIN D, et al. EDTA-cross-linked beta-cyclodextrin: an environmentally friendly bifunctional adsorbent for simultaneous adsorption of metals and cationic dyes[J]. Environmental Science & Technology, 2015, 49(17): 10570-10580.
|
[18] |
QIU H, LING C, YUAN R, et al. Bridging effects behind the coadsorption of copper and sulfamethoxazole by a polyamine-modified resin[J]. Chemical Engineering Journal, 2019, 362: 422-429. doi: 10.1016/j.cej.2019.01.043
|
[19] |
CHEN T, LIU F, LING C, et al. Insight into highly efficient coremoval of copper and p-nitrophenol by a newly synthesized polyamine chelating resin from aqueous media: competition and enhancement effect upon site recognition[J]. Environmental Science & Technology, 2013, 47(23): 13652-13660.
|
[20] |
AHMED M, ZHOU J, NGO H, et al. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges[J]. Science of the Total Environment, 2015, 532: 112-126. doi: 10.1016/j.scitotenv.2015.05.130
|
[21] |
ZHOU Y, LIU X, TANG L, et al. Insight into highly efficient co-removal of p-nitrophenol and lead by nitrogen-functionalized magnetic ordered mesoporous carbon: Performance and modelling[J]. Journal of Hazardous Materials, 2017, 333: 80-87. doi: 10.1016/j.jhazmat.2017.03.031
|
[22] |
REN J, ZHENG L, SU Y, et al. Competitive adsorption of Cd(II), Pb(II) and Cu(II) ions from acid mine drainage with zero-valent iron/phosphoric titanium dioxide: XPS qualitative analyses and DFT quantitative calculations[J]. Chemical Engineering Journal, 2022, 445: 136778. doi: 10.1016/j.cej.2022.136778
|
[23] |
YU H, ZHENG L, ZHANG T, REN J, et al. Adsorption behavior of Cd (II) on TEMPO-oxidized cellulose in inorganic/ organic complex systems[J]. Environmental Research, 2021, 195: 110848. doi: 10.1016/j.envres.2021.110848
|
[24] |
BEDIAKO J K, WEI W, KIM S, et al. Removal of heavy metals from aqueous phases using chemically modified waste Lyocell fiber[J]. Journal of Hazardous Materials, 2015, 299: 550-561. doi: 10.1016/j.jhazmat.2015.07.033
|
[25] |
ZHENG L, ZHANG S, CHENG W, et al. Theoretical calculations, molecular dynamics simulations and experimental investigation of the adsorption of cadmium(ii) on amidoxime-chelating cellulose[J]. Journal of Materials Chemistry A, 2019, 7(22): 13714-13726. doi: 10.1039/C9TA03622A
|
[26] |
ZHENG L, YANG Y, MENG P, et al. Absorption of cadmium (II) via sulfur-chelating based cellulose: Characterization, isotherm models and their error analysis[J]. Carbohydrate Polymers, 2019, 209: 38-50. doi: 10.1016/j.carbpol.2019.01.012
|
[27] |
ZHENG L, PENG D, MENG P. Promotion effects of nitrogenous and oxygenic functional groups on cadmium (II) removal by carboxylated corn stalk[J]. Journal of Cleaner Production, 2018, 201: 609-623. doi: 10.1016/j.jclepro.2018.08.070
|
[28] |
KUMAR M, SINGH S, SHAHI V K. Cross-linked poly(vinyl alcohol)-poly(acrylonitrile-co-2-dimethylamino ethylmethacrylate) based anion-exchange membranes in aqueous media[J]. Journal of Physical Chemistry B, 2010, 114(1): 198-206. doi: 10.1021/jp9082079
|
[29] |
姚之侃. 叔胺两亲共聚物共混膜的制备及其过滤吸附功能的研究[D]. 杭州: 浙江大学, 2015.
|
[30] |
HUANG B, LIU Y, LIU B, et al. Effect of Cu(II) ions on the enhancement of tetracycline adsorption by Fe3O4@SiO2-Chitosan/graphene oxide nanocomposite[J]. Carbohydrate Polymer, 2017, 157: 576-585. doi: 10.1016/j.carbpol.2016.10.025
|
[31] |
LI M, LIU Y, LIU S, et al. Cu(II)-influenced adsorption of ciprofloxacin from aqueous solutions by magnetic graphene oxide/nitrilotriacetic acid nanocomposite: competition and enhancement mechanisms[J]. Chemical Engineering Journal, 2017, 319: 219-228. doi: 10.1016/j.cej.2017.03.016
|
[32] |
LING C, LI X, ZHANG Z, et al. High adsorption of sulfamethoxazole by an amine-modified polystyrene-divinylbenzene resin and its mechanistic insight[J]. Environmental Science and Technology, 2016, 50(18): 10015-10023. doi: 10.1021/acs.est.6b02846
|
[33] |
WANG R Z, HUANG D L, LIU Y G, et al. Synergistic removal of copper and tetracycline from aqueous solution by steam-activated bamboo-derived biochar[J]. Journal of Hazardous Materials, 2020, 384: 121470. doi: 10.1016/j.jhazmat.2019.121470
|
[34] |
LI Z, LI M, WANG Z, LIU X. Coadsorption of Cu(II) and tylosin/sulfamethoxazole on biochar stabilized by nano-hydroxyapatite in aqueous environment[J]. Chemical Engineering Journal, 2020, 381: 122785. doi: 10.1016/j.cej.2019.122785
|
[35] |
汪晨. 水中典型药物与重金属的络合行为[D]. 南京: 东南大学, 2016.
|
[36] |
PUNAMIYA P, SARKAR D, RAKSHIT S, et al. Effect of solution properties, competing ligands, and complexing metal on sorption of tetracyclines on Al-based drinking water treatment residuals[J]. Environmental Science and Pollution Research, 2015, 22(10): 7508-7518. doi: 10.1007/s11356-015-4145-z
|
[37] |
ZHANG T, ZHENG L, YU H, et al. Solution pH affects single, sequential and binary systems of sulfamethoxazole and cadmium adsorption by self-assembled cellulose: Promotion or inhibition?[J]. Journal of Hazardous Materials, 2021, 402: 124084. doi: 10.1016/j.jhazmat.2020.124084
|
[38] |
WEI J, SUN W, PAN W, et al. Comparing the effects of different oxygen-containing functional groups on sulfonamides adsorption by carbon nanotubes: Experiments and theoretical calculation[J]. Chemical Engineering Journal, 2017, 312: 167-179. doi: 10.1016/j.cej.2016.11.133
|
[39] |
SONG W, YANG T, WANG X, et al. Experimental and theoretical evidence for competitive interactions of tetracycline and sulfamethazine with reduced graphene oxides[J]. Environmental Science:Nano, 2016, 3(6): 1318-1326. doi: 10.1039/C6EN00306K
|
[40] |
HOSSAIN M R, HASAN M M, NOOR-E-ASHRAFI, et al. Adsorption behaviour of metronidazole drug molecule on the surface of hydrogenated graphene, boron nitride and boron carbide nanosheets in gaseous and aqueous medium: A comparative DFT and QTAIM insight[J]. Physica E, 2021: 126.
|
[41] |
LI S, WANG F, PAN W, et al. Molecular insights into the effects of Cu(II) on sulfamethoxazole and 17 β-estradiol adsorption by carbon nanotubes/CoFe2O4 composites[J]. Chemical Engineering Journal, 2019, 373: 995-1002. doi: 10.1016/j.cej.2019.05.111
|