[1] VERON F, Ocean spray[J]. Annual Review of Fluid Mechanics, 2015, 47: 507-538.
[2] de LEEUW G, ANDREAS E L, ANGUELOVA M D, et al. Production flux of sea spray aerosol [J]. Reviews of Geophysics, 2011, 49(2): RG2001.
[3] BROOKS S D, THORNTON D C O. Marine aerosols and clouds [J]. Annual Review of Marine Science, 2018, 10: 289-313. doi: 10.1146/annurev-marine-121916-063148
[4] HENDRICKSON B N, BROOKS S D, THORNTON D C O, et al. Role of sea surface microlayer properties in cloud formation [J]. Frontiers in Marine Science, 2021, 7: 596225. doi: 10.3389/fmars.2020.596225
[5] XU W, OVADNEVAITE J, FOSSUM K N, et al. Sea spray as an obscured source for marine cloud nuclei [J]. Nature Geoscience, 2022, 15(4): 282-286. doi: 10.1038/s41561-022-00917-2
[6] FOSSUM K N, OVADNEVAITE J, CEBURNIS D, et al. Summertime primary and secondary contributions to Southern Ocean cloud condensation nuclei [J]. Scientific Reports, 2018, 8: 13844. doi: 10.1038/s41598-018-32047-4
[7] QUINN P K, COFFMAN D J, JOHNSON J E, et al. Small fraction of marine cloud condensation nuclei made up of sea spray aerosol [J]. Nature Geoscience, 2017, 10(9): 674-679. doi: 10.1038/ngeo3003
[8] BEER C G, HENDRICKS J, RIGHI M, et al. Modelling mineral dust emissions and atmospheric dispersion with MADE3 in EMAC v2.54 [J]. Geoscientific Model Development, 2020, 13(9): 4287-4303. doi: 10.5194/gmd-13-4287-2020
[9] CONNOLLY P J, MCFIGGANS G B, WOOD R, et al. Factors determining the most efficient spray distribution for marine cloud brightening [J]. Philosophical Transactions:Mathematical, Physical and Engineering Sciences, 2014, 372(2031): 20140056.
[10] LATHAM J, SMITH M H. Effect on global warming of wind-dependent aerosol generation at the ocean surface [J]. Nature, 1990, 347(6291): 372-373. doi: 10.1038/347372a0
[11] SCHIFFER J M, MAEL L E, PRATHER K A, et al. Sea spray aerosol: Where marine biology meets atmospheric chemistry [J]. ACS Central Science, 2018, 4(12): 1617-1623. doi: 10.1021/acscentsci.8b00674
[12] JOHANSSON J H, SALTER M E, NAVARRO J C A, et al. Global transport of perfluoroalkyl acids via sea spray aerosol [J]. Environmental Science:Processes & Impacts, 2019, 21(4): 635-649.
[13] YANG S Y, ZHANG T, GAN Y Q, et al. Constraining microplastic particle emission flux from the ocean [J]. Environmental Science & Technology Letters, 2022, 9(6): 513-519.
[14] GUASCO T L, CUADRA-RODRIGUEZ L A, PEDLER B E, et al. Transition metal associations with primary biological particles in sea spray aerosol generated in a wave channel [J]. Environmental Science & Technology, 2014, 48(2): 1324-1333.
[15] SEM K, JANG M, PIERCE R, et al. Characterization of atmospheric processes of brevetoxins in sea spray aerosols from red tide events [J]. Environmental Science & Technology, 2022, 56(3): 1811-1819.
[16] MICHAUD J M, THOMPSON L R, KAUL D, et al. Taxon-specific aerosolization of bacteria and viruses in an experimental ocean-atmosphere mesocosm [J]. Nature Communications, 2018, 9: 2017. doi: 10.1038/s41467-018-04409-z
[17] WOODCOCK A H, KIENTZLER C F, ARONS A B, et al. Giant condensation nuclei from bursting bubbles [J]. Nature, 1953, 172(4390): 1144-1145. doi: 10.1038/1721144a0
[18] MONAHAN E C, O'MUIRCHEARTAIGH I G. Whitecaps and the passive remote sensing of the ocean surface [J]. International Journal of Remote Sensing, 1986, 7(5): 627-642. doi: 10.1080/01431168608954716
[19] NILSSON E D, RANNIK, SWIETLICKI E, et al. Turbulent aerosol fluxes over the Arctic Ocean: 2. Wind-driven sources from the sea [J]. Journal of Geophysical Research:Atmospheres, 2001, 106(D23): 32139-32154. doi: 10.1029/2000JD900747
[20] LEWIS R, SCHWARTZ E. Sea Salt Aerosol Production: Mechanisms, Methods, Measurements and Models—A Critical Review[M]. Washington, D. C. : American Geophysical Union, 2004.
[21] DEANE G B, STOKES M D. Scale dependence of bubble creation mechanisms in breaking waves [J]. Nature, 2002, 418(6900): 839-844. doi: 10.1038/nature00967
[22] WANG Y, BOUROUIBA L. Non-isolated drop impact on surfaces [J]. Journal of Fluid Mechanics, 2018, 835: 24-44. doi: 10.1017/jfm.2017.755
[23] LHUISSIER H, VILLERMAUX E. Bursting bubble aerosols [J]. Journal of Fluid Mechanics, 2012, 696: 5-44. doi: 10.1017/jfm.2011.418
[24] JIANG X H, ROTILY L, VILLERMAUX E, et al. Submicron drops from flapping bursting bubbles [J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(1): e2112924119. doi: 10.1073/pnas.2112924119
[25] QUINN P K, COLLINS D B, GRASSIAN V H, et al. Chemistry and related properties of freshly emitted sea spray aerosol [J]. Chemical Reviews, 2015, 115(10): 4383-4399. doi: 10.1021/cr500713g
[26] 吕辰. 海洋飞沫气溶胶参与下的烯烃醚臭氧化反应[D]. 济南: 山东大学, 2020. LV C. Ozonolysis of vinyl ethers with the participation of sea spray aerosol[D]. Jinan: Shandong University, 2020(in Chinese).
[27] BLANCHARD D C. The electrification of the atmosphere by particles from bubbles in the sea [J]. Progress in Oceanography, 1963, 1: 73-202. doi: 10.1016/0079-6611(63)90004-1
[28] CIPRIANO R J, BLANCHARD D C. Bubble and aerosol spectra produced by a laboratory ‘breaking wave’ [J]. Journal of Geophysical Research Atmospheres, 1981, 86(C9): 8085. doi: 10.1029/JC086iC09p08085
[29] KE W R, KUO Y M, LIN C W, et al. Characterization of aerosol emissions from single bubble bursting [J]. Journal of Aerosol Science, 2017, 109: 1-12. doi: 10.1016/j.jaerosci.2017.03.006
[30] PRATHER K A, BERTRAM T H, GRASSIAN V H, et al. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): 7550-7555. doi: 10.1073/pnas.1300262110
[31] STOKES M D, DEANE G B, PRATHER K, et al. A Marine Aerosol Reference Tank system as a breaking wave analogue for the production of foam and sea-spray aerosols [J]. Atmospheric Measurement Techniques, 2013, 6(4): 1085-1094. doi: 10.5194/amt-6-1085-2013
[32] WANG X F, SULTANA C M, TRUEBLOOD J, et al. Microbial control of sea spray aerosol composition: A tale of two blooms [J]. ACS Central Science, 2015, 1(3): 124-131. doi: 10.1021/acscentsci.5b00148
[33] BRABAN C F, ADAMS J W, RODRIGUEZ D, et al. Heterogeneous reactions of HOI, ICl and IBr on sea salt and sea salt proxies [J]. Physical Chemistry Chemical Physics:PCCP, 2007, 9(24): 3136-3148. doi: 10.1039/b700829e
[34] MCNEILL V F, PATTERSON J, WOLFE G M, et al. The effect of varying levels of surfactant on the reactive uptake of N2O5 to aqueous aerosol [J]. Atmospheric Chemistry and Physics, 2006, 6(6): 1635-1644. doi: 10.5194/acp-6-1635-2006
[35] MOORE R H, INGALL E D, SOROOSHIAN A, et al. Molar mass, surface tension, and droplet growth kinetics of marine organics from measurements of CCN activity [J]. Geophysical Research Letters, 2008, 35(7): L07801.
[36] FUENTES E, COE H, GREEN D, et al. Laboratory-generated primary marine aerosol via bubble-bursting and atomization [J]. Atmospheric Measurement Techniques, 2010, 3(1): 141-162. doi: 10.5194/amt-3-141-2010
[37] KEENE W C, MARING H, MABEN J R, et al. Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface [J]. Journal of Geophysical Research Atmospheres, 2007, 112(D21): D21202. doi: 10.1029/2007JD008464
[38] WISE M E, FRENEY E J, TYREE C A, et al. Hygroscopic behavior and liquid-layer composition of aerosol particles generated from natural and artificial seawater [J]. Journal of Geophysical Research Atmospheres, 2009, 114(D3): D03201.
[39] PARK J Y, LIM S, PARK K. Mixing state of submicrometer sea spray particles enriched by insoluble species in bubble-bursting experiments [J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(1): 93-104. doi: 10.1175/JTECH-D-13-00086.1
[40] LV C, TSONA N T, DU L. Sea spray aerosol formation: Results on the role of different parameters and organic concentrations from bubble bursting experiments [J]. Chemosphere, 2020, 252: 126456. doi: 10.1016/j.chemosphere.2020.126456
[41] NIELSEN L S, BILDE M. Exploring controlling factors for sea spray aerosol production: Temperature, inorganic ions and organic surfactants [J]. Tellus B:Chemical and Physical Meteorology, 2020, 72(1): 1801305. doi: 10.1080/16000889.2020.1801305
[42] MODINI R L, HARRIS B, RISTOVSKI Z D. The organic fraction of bubble-generated, accumulation mode Sea Spray Aerosol (SSA) [J]. Atmospheric Chemistry and Physics, 2010, 10(6): 2867-2877. doi: 10.5194/acp-10-2867-2010
[43] SELLEGRI K, O'DOWD C D, YOON Y J, et al. Surfactants and submicron sea spray generation [J]. Journal of Geophysical Research Atmospheres, 2006, 111(D22): D22215. doi: 10.1029/2005JD006658
[44] MOORE M J K, FURUTANI H, ROBERTS G C, et al. Effect of organic compounds on cloud condensation nuclei (CCN) activity of sea spray aerosol produced by bubble bursting [J]. Atmospheric Environment, 2011, 45(39): 7462-7469. doi: 10.1016/j.atmosenv.2011.04.034
[45] GASTON C J, FURUTANI H, GUAZZOTTI S A, et al. Unique ocean-derived particles serve as a proxy for changes in ocean chemistry [J]. Journal of Geophysical Research Atmospheres, 2011, 116(D18): D18310. doi: 10.1029/2010JD015289
[46] KING S M, BUTCHER A C, ROSENOERN T, et al. Investigating primary marine aerosol properties: CCN activity of sea salt and mixed inorganic-organic particles [J]. Environmental Science & Technology, 2012, 46(19): 10405-10412.
[47] WANG X F, DEANE G B, MOORE K A, et al. The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 6978-6983. doi: 10.1073/pnas.1702420114
[48] RASMUSSEN B B, NGUYEN Q T, KRISTENSEN K, et al. What controls volatility of sea spray aerosol?Results from laboratory studies using artificial and real seawater samples [J]. Journal of Aerosol Science, 2017, 107: 134-141. doi: 10.1016/j.jaerosci.2017.02.002
[49] ZÁBORI J, KREJCI R, STRÖM J, et al. Comparison between summertime and wintertime Arctic Ocean primary marine aerosol properties [J]. Atmospheric Chemistry and Physics, 2013, 13(9): 4783-4799. doi: 10.5194/acp-13-4783-2013
[50] ZÁBORI J, KREJCI R, EKMAN A M L, et al. Wintertime Arctic Ocean Sea water properties and primary marine aerosol concentrations [J]. Atmospheric Chemistry and Physics, 2012, 12(21): 10405-10421. doi: 10.5194/acp-12-10405-2012
[51] TYREE C A, HELLION V M, ALEXANDROVA O A, et al. Foam droplets generated from natural and artificial seawaters [J]. Journal of Geophysical Research Atmospheres, 2007, 112(D12): D12204. doi: 10.1029/2006JD007729
[52] KEENE W C, LONG M S, REID J S, et al. Factors that modulate properties of primary marine aerosol generated from ambient seawater on ships at sea [J]. Journal of Geophysical Research:Atmospheres, 2017, 122(21): 11961-11990. doi: 10.1002/2017JD026872
[53] LIU L R, DU L, XU L, et al. Molecular size of surfactants affects their degree of enrichment in the sea spray aerosol formation [J]. Environmental Research, 2022, 206: 112555. doi: 10.1016/j.envres.2021.112555
[54] CHRISTIANSEN S, SALTER M E, GOROKHOVA E, et al. Sea spray aerosol formation: Laboratory results on the role of air entrainment, water temperature, and phytoplankton biomass [J]. Environmental Science & Technology, 2019, 53(22): 13107-13116.
[55] HULTIN K A H, NILSSON E D, KREJCI R, et al. In situ laboratory sea spray production during the Marine Aerosol Production 2006 cruise on the northeastern Atlantic Ocean [J]. Journal of Geophysical Research Atmospheres, 2010, 115(D6): D06201.
[56] FACCHINI M C, RINALDI M, DECESARI S, et al. Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates [J]. Geophysical Research Letters, 2008, 35(17): L17814. doi: 10.1029/2008GL034210
[57] COLLINS D B, ZHAO D F, RUPPEL M J, et al. Direct aerosol chemical composition measurements to evaluate the physicochemical differences between controlled sea spray aerosol generation schemes [J]. Atmospheric Measurement Techniques, 2014, 7(11): 3667-3683. doi: 10.5194/amt-7-3667-2014
[58] SALTER M E, NILSSON E D, BUTCHER A, et al. On the seawater temperature dependence of the sea spray aerosol generated by a continuous plunging jet [J]. Journal of Geophysical Research:Atmospheres, 2014, 119(14): 9052-9072. doi: 10.1002/2013JD021376
[59] BATES T S, QUINN P K, FROSSARD A A, et al. Measurements of ocean derived aerosol off the coast of California [J]. Journal of Geophysical Research:Atmospheres, 2012, 117(D21): D00V15.
[60] SAUER J S, MAYER K J, LEE C, et al. The Sea Spray Chemistry and Particle Evolution study (SeaSCAPE): Overview and experimental methods [J]. Environmental Science. Processes & Impacts, 2022, 24(2): 290-315.
[61] MODINI R L, FROSSARD A A, AHLM L, et al. Primary marine aerosol-cloud interactions off the coast of California [J]. Journal of Geophysical Research:Atmospheres, 2015, 120(9): 4282-4303. doi: 10.1002/2014JD022963
[62] DONALDSON D J, VAIDA V. The influence of organic films at the air-aqueous boundary on atmospheric processes [J]. Chemical Reviews, 2006, 106(4): 1445-1461. doi: 10.1021/cr040367c
[63] BIGG E K, LECK C. The composition of fragments of bubbles bursting at the ocean surface [J]. Journal of Geophysical Research Atmospheres, 2008, 113(D11): D11209. doi: 10.1029/2007JD009078
[64] JAYARATHNE T, SULTANA C M, LEE C, et al. Enrichment of saccharides and divalent cations in sea spray aerosol during two phytoplankton blooms [J]. Environmental Science & Technology, 2016, 50(21): 11511-11520.
[65] SALTER M E, HAMACHER-BARTH E, LECK C, et al. Calcium enrichment in sea spray aerosol particles [J]. Geophysical Research Letters, 2016, 43(15): 8277-8285. doi: 10.1002/2016GL070275
[66] SCHWIER A N, SELLEGRI K, MAS S, et al. Primary marine aerosol physical flux and chemical composition during a nutrient enrichment experiment in mesocosms in the Mediterranean Sea [J]. Atmospheric Chemistry and Physics, 2017, 17(23): 14645-14660. doi: 10.5194/acp-17-14645-2017
[67] HASENECZ E S, JAYARATHNE T, PENDERGRAFT M A, et al. Marine bacteria affect saccharide enrichment in sea spray aerosol during a phytoplankton bloom [J]. ACS Earth and Space Chemistry, 2020, 4(9): 1638-1649. doi: 10.1021/acsearthspacechem.0c00167
[68] TRIESCH N, van PINXTEREN M, SALTER M, et al. Sea spray aerosol chamber study on selective transfer and enrichment of free and combined amino acids [J]. ACS Earth and Space Chemistry, 2021, 5(6): 1564-1574. doi: 10.1021/acsearthspacechem.1c00080
[69] COCHRAN R E, LASKINA O, JAYARATHNE T, et al. Analysis of organic anionic surfactants in fine and coarse fractions of freshly emitted sea spray aerosol [J]. Environmental Science & Technology, 2016, 50(5): 2477-2486.
[70] FU P Q, KAWAMURA K, USUKURA K, et al. Dicarboxylic acids, ketocarboxylic acids and glyoxal in the marine aerosols collected during a round-the-world cruise [J]. Marine Chemistry, 2013, 148: 22-32. doi: 10.1016/j.marchem.2012.11.002
[71] HAWKINS L N, RUSSELL L M. Polysaccharides, proteins, and phytoplankton fragments: Four chemically distinct types of marine primary organic aerosol classified by single particle spectromicroscopy [J]. Advances in Meteorology, 2010, 2010: 1-14.
[72] FUENTES E, COE H, GREEN D, et al. On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol–Part 2: Composition, hygroscopicity and cloud condensation activity [J]. Atmospheric Chemistry and Physics, 2011, 11(6): 2585-2602. doi: 10.5194/acp-11-2585-2011
[73] SCHWIER A N, ROSE C, ASMI E, et al. Primary marine aerosol emissions from the Mediterranean Sea during pre-bloom and oligotrophic conditions: Correlations to seawater chlorophyll a from a mesocosm study [J]. Atmospheric Chemistry and Physics, 2015, 15(14): 7961-7976. doi: 10.5194/acp-15-7961-2015
[74] PRATT K A, DEMOTT P J, FRENCH J R, et al. In situ detection of biological particles in cloud ice-crystals [J]. Nature Geoscience, 2009, 2(6): 398-401. doi: 10.1038/ngeo521
[75] KALUARACHCHI C P, OR V W, LAN Y, et al. Size-dependent morphology, composition, phase state and water uptake of nascent submicrometer sea spray aerosols during a phytoplankton bloom [J]. ACS Earth and Space Chemistry, 2022, 6(1): 116-130. doi: 10.1021/acsearthspacechem.1c00306
[76] LEE H D, WIGLEY S, LEE C, et al. Physicochemical mixing state of sea spray aerosols: Morphologies exhibit size dependence [J]. ACS Earth and Space Chemistry, 2020, 4(9): 1604-1611. doi: 10.1021/acsearthspacechem.0c00153
[77] KOEHLER K A, KREIDENWEIS S M, DEMOTT P J, et al. Water activity and activation diameters from hygroscopicity data - Part II: Application to organic species [J]. Atmospheric Chemistry and Physics, 2006, 6(3): 795-809. doi: 10.5194/acp-6-795-2006
[78] LEE H D, MORRIS H S, LASKINA O, et al. Organic enrichment, physical phase state, and surface tension depression of nascent core–shell sea spray aerosols during two phytoplankton blooms [J]. ACS Earth and Space Chemistry, 2020, 4(4): 650-660. doi: 10.1021/acsearthspacechem.0c00032
[79] CRAVIGAN L T, MALLET M D, VAATTOVAARA P, et al. Sea spray aerosol organic enrichment, water uptake and surface tension effects [J]. Atmospheric Chemistry and Physics, 2020, 20(13): 7955-7977. doi: 10.5194/acp-20-7955-2020
[80] LI J, CARLSON B E, YUNG Y L, et al. Scattering and absorbing aerosols in the climate system [J]. Nature Reviews Earth & Environment, 2022, 3(6): 363-379.
[81] KANAKIDOU M, SEINFELD J H, PANDIS S N, et al. Organic aerosol and global climate modelling: A review [J]. Atmospheric Chemistry and Physics, 2005, 5(4): 1053-1123. doi: 10.5194/acp-5-1053-2005
[82] COCHRAN R E, JAYARATHNE T, STONE E A, et al. Selectivity across the interface: A test of surface activity in the composition of organic-enriched aerosols from bubble bursting [J]. The Journal of Physical Chemistry Letters, 2016, 7(9): 1692-1696. doi: 10.1021/acs.jpclett.6b00489
[83] MUKHERJEE P, REINFELDER J R, GAO Y. Enrichment of calcium in sea spray aerosol in the Arctic summer atmosphere [J]. Marine Chemistry, 2020, 227: 103898. doi: 10.1016/j.marchem.2020.103898
[84] LECK C, SVENSSON E. Importance of aerosol composition and mixing state for cloud droplet activation over the Arctic pack ice in summer [J]. Atmospheric Chemistry and Physics, 2015, 15(5): 2545-2568. doi: 10.5194/acp-15-2545-2015
[85] GAO Q, LECK C, RAUSCHENBERG C, et al. On the chemical dynamics of extracellular polysaccharides in the high Arctic surface microlayer [J]. Ocean Science, 2012, 8(4): 401-418. doi: 10.5194/os-8-401-2012
[86] CASILLAS-ITUARTE N N, CALLAHAN K M, TANG C Y, et al. Surface organization of aqueous MgCl2 and application to atmospheric marine aerosol chemistry [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(15): 6616-6621. doi: 10.1073/pnas.0912322107
[87] HARA K, OSADA K, YABUKI M, et al. Seasonal variation of fractionated sea-salt particles on the Antarctic coast [J]. Geophysical Research Letters, 2012, 39(18): L18801.
[88] WELLER R, WAGENBACH D. Year-round chemical aerosol records in continental Antarctica obtained by automatic samplings [J]. Tellus B:Chemical and Physical Meteorology, 2007, 59(4): 755-765. doi: 10.1111/j.1600-0889.2007.00293.x
[89] PARK K, KIM J S, MILLER A L. A study on effects of size and structure on hygroscopicity of nanoparticles using a tandem differential mobility analyzer and TEM [J]. Journal of Nanoparticle Research, 2009, 11(1): 175-183. doi: 10.1007/s11051-008-9462-4
[90] CARTER-FENK K, ALLEN H. Collapse mechanisms of nascent and aged sea spray aerosol proxy films [J]. Atmosphere, 2018, 9(12): 503. doi: 10.3390/atmos9120503
[91] SONG Y R, LI J L, TSONA N T, et al. Enrichment of short-chain organic acids transferred to submicron sea spray aerosols[J]. The Science of the Total Environment, 2022, 851(Pt 1): 158122.
[92] HASENECZ E S, KALUARACHCHI C P, LEE H D, et al. Saccharide transfer to sea spray aerosol enhanced by surface activity, calcium, and protein interactions [J]. ACS Earth and Space Chemistry, 2019, 3(11): 2539-2548. doi: 10.1021/acsearthspacechem.9b00197
[93] CARTER-FENK K A, DOMMER A C, FIAMINGO M E, et al. Calcium bridging drives polysaccharide co-adsorption to a proxy sea surface microlayer [J]. Physical Chemistry Chemical Physics:PCCP, 2021, 23(30): 16401-16416. doi: 10.1039/D1CP01407B
[94] SCHILL S, BURROWS S, HASENECZ E, et al. The impact of divalent cations on the enrichment of soluble saccharides in primary sea spray aerosol [J]. Atmosphere, 2018, 9(12): 476. doi: 10.3390/atmos9120476
[95] KIRKPATRICK B, PIERCE R, CHENG Y S, et al. Inland transport of aerosolized Florida red tide toxins [J]. Harmful Algae, 2010, 9(2): 186-189. doi: 10.1016/j.hal.2009.09.003
[96] MCCLUSKEY C S, HILL T C J, MALFATTI F, et al. A dynamic link between ice nucleating particles released in nascent sea spray aerosol and oceanic biological activity during two mesocosm experiments [J]. Journal of the Atmospheric Sciences, 2017, 74(1): 151-166. doi: 10.1175/JAS-D-16-0087.1
[97] ICKES L, PORTER G C E, WAGNER R, et al. The ice-nucleating activity of Arctic Sea surface microlayer samples and marine algal cultures [J]. Atmospheric Chemistry and Physics, 2020, 20(18): 11089-11117. doi: 10.5194/acp-20-11089-2020
[98] STANIEC A, VLAHOS P, MONAHAN E C. The role of sea spray in atmosphere–ocean gas exchange [J]. Nature Geoscience, 2021, 14(8): 593-598. doi: 10.1038/s41561-021-00796-z
[99] ANDREAS E L. A new sea spray generation function for wind speeds up to 32 m s–1 [J]. Journal of Physical Oceanography, 1998, 28(11): 2175-2184. doi: 10.1175/1520-0485(1998)028<2175:ANSSGF>2.0.CO;2
[100] 赵栋梁. 海洋飞沫及其对海—气相互作用影响的研究进展 [J]. 地球科学进展, 2012, 27(6): 624-632. ZHAO D L. Progress in sea spray and its effects on air-sea interaction [J]. Advances in Earth Science, 2012, 27(6): 624-632(in Chinese).
[101] GRYTHE H, STRÖM J, KREJCI R, et al. A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements [J]. Atmospheric Chemistry and Physics, 2014, 14(3): 1277-1297. doi: 10.5194/acp-14-1277-2014
[102] MONAHAN E C, MUIRCHEARTAIGH I. Optimal power-law description of oceanic whitecap coverage dependence on wind speed [J]. Journal of Physical Oceanography, 1980, 10(12): 2094-2099. doi: 10.1175/1520-0485(1980)010<2094:OPLDOO>2.0.CO;2
[103] DEIKE L. Mass transfer at the ocean–atmosphere interface: The role of wave breaking, droplets, and bubbles [J]. Annual Review of Fluid Mechanics, 2022, 54: 191-194. doi: 10.1146/annurev-fluid-030121-014132
[104] DEIKE L, GHABACHE E, LIGER-BELAIR G, et al. Dynamics of jets produced by bursting bubbles [J]. Physical Review Fluids, 2018, 3: 013603. doi: 10.1103/PhysRevFluids.3.013603
[105] ANGUELOVA M D, WEBSTER F, Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps[J]. Journal of Geophysical Research Atmospheres, 2006, 111(C3): C03017.
[106] SALTER M E, ZIEGER P, ACOSTA NAVARRO J C, et al. An empirically derived inorganic sea spray source function incorporating sea surface temperature [J]. Atmospheric Chemistry and Physics, 2015, 15(19): 11047-11066. doi: 10.5194/acp-15-11047-2015
[107] HULTIN K A H, KREJCI R, PINHASSI J, et al. Aerosol and bacterial emissions from Baltic Seawater [J]. Atmospheric Research, 2011, 99(1): 1-14. doi: 10.1016/j.atmosres.2010.08.018
[108] FORESTIERI S D, MOORE K A, MARTINEZ BORRERO R, et al. Temperature and composition dependence of sea spray aerosol production [J]. Geophysical Research Letters, 2018, 45(14): 7218-7225. doi: 10.1029/2018GL078193
[109] MÅRTENSSON E M, NILSSON E D, de LEEUW G, et al. Laboratory simulations and parameterization of the primary marine aerosol production [J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D9): 4297.
[110] CALLAGHAN A H, STOKES M D, DEANE G B. The effect of water temperature on air entrainment, bubble plumes, and surface foam in a laboratory breaking-wave analog [J]. Journal of Geophysical Research:Oceans, 2014, 119(11): 7463-7482. doi: 10.1002/2014JC010351
[111] THORPE S A, BOWYER P, WOOLF D K. Some factors affecting the size distributions of oceanic bubbles [J]. Journal of Physical Oceanography, 1992, 22(4): 382-389. doi: 10.1175/1520-0485(1992)022<0382:SFATSD>2.0.CO;2
[112] LIU S, LIU C C, FROYD K D, et al. Sea spray aerosol concentration modulated by sea surface temperature [J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(9): e2020583118. doi: 10.1073/pnas.2020583118
[113] PARK J, JANG J, YOON Y J, et al. When river water meets seawater: Insights into primary marine aerosol production[J]. The Science of the Total Environment, 2022, 807(Pt 2): 150866.
[114] MAY N W, AXSON J L, WATSON A, et al. Lake spray aerosol generation: A method for producing representative particles from freshwater wave breaking [J]. Atmospheric Measurement Techniques, 2016, 9(9): 4311-4325. doi: 10.5194/amt-9-4311-2016
[115] XU M L, TSONA N T, LI J L, et al. Atmospheric chemical processes of microcystin-LR at the interface of sea spray aerosol [J]. Chemosphere, 2022, 294: 133726. doi: 10.1016/j.chemosphere.2022.133726
[116] CASAS G, MARTÍNEZ-VARELA A, ROSCALES J L, et al. Enrichment of perfluoroalkyl substances in the sea-surface microlayer and sea-spray aerosols in the Southern Ocean [J]. Environmental Pollution (Barking, Essex:1987), 2020, 267: 115512. doi: 10.1016/j.envpol.2020.115512
[117] van ACKER E, de RIJCKE M, LIU Z X, et al. Sea spray aerosols contain the major component of human lung surfactant [J]. Environmental Science & Technology, 2021, 55(23): 15989-16000.
[118] PARTANEN A I, DUNNE E M, BERGMAN T, et al. Global modelling of direct and indirect effects of sea spray aerosol using a source function encapsulating wave state [J]. Atmospheric Chemistry and Physics, 2014, 14(21): 11731-11752. doi: 10.5194/acp-14-11731-2014
[119] VIGNATI E, FACCHINI M C, RINALDI M, et al. Global scale emission and distribution of sea-spray aerosol: Sea-salt and organic enrichment [J]. Atmospheric Environment, 2010, 44(5): 670-677. doi: 10.1016/j.atmosenv.2009.11.013
[120] SPRACKLEN D V, ARNOLD S R, SCIARE J, et al. Globally significant oceanic source of organic carbon aerosol [J]. Geophysical Research Letters, 2008, 35(12): L12811.
[121] RINALDI M, DECESARI S, FINESSI E, et al. Primary and secondary organic marine aerosol and oceanic biological activity: Recent results and new perspectives for future studies [J]. Advances in Meteorology, 2010, 2010: 310682.
[122] O'DOWD C D, FACCHINI M C, CAVALLI F, et al. Biogenically driven organic contribution to marine aerosol [J]. Nature, 2004, 431(7009): 676-680. doi: 10.1038/nature02959
[123] PARK J, KIM D, LEE K, et al. Effect of phytoplankton biomass in seawater on chemical properties of sea spray aerosols [J]. Marine Pollution Bulletin, 2016, 110(1): 231-237. doi: 10.1016/j.marpolbul.2016.06.058
[124] RINALDI M, FUZZI S, DECESARI S, et al. Is chlorophyll-a the best surrogate for organic matter enrichment in submicron primary marine aerosol? [J]. Journal of Geophysical Research:Atmospheres, 2013, 118(10): 4964-4973. doi: 10.1002/jgrd.50417
[125] FRENEY E, SELLEGRI K, NICOSIA A, et al. Mediterranean nascent sea spray organic aerosol and relationships with seawater biogeochemistry [J]. Atmospheric Chemistry and Physics, 2021, 21(13): 10625-10641. doi: 10.5194/acp-21-10625-2021
[126] SANTANDER M V, SCHIFFER J M, LEE C, et al. Factors controlling the transfer of biogenic organic species from seawater to sea spray aerosol [J]. Scientific Reports, 2022, 12: 3580. doi: 10.1038/s41598-022-07335-9
[127] LEE C, SULTANA C M, COLLINS D B, et al. Advancing model systems for fundamental laboratory studies of sea spray aerosol using the microbial loop [J]. The Journal of Physical Chemistry A, 2015, 119(33): 8860-8870. doi: 10.1021/acs.jpca.5b03488
[128] LONG M S, KEENE W C, KIEBER D J, et al. Light-enhanced primary marine aerosol production from biologically productive seawater [J]. Geophysical Research Letters, 2014, 41(7): 2661-2670. doi: 10.1002/2014GL059436
[129] FLORES J M, BOURDIN G, KOSTINSKI A B, et al. Diel cycle of sea spray aerosol concentration [J]. Nature Communications, 2021, 12: 5476. doi: 10.1038/s41467-021-25579-3
[130] QUINN P K, BATES T S. The case against climate regulation via oceanic phytoplankton sulphur emissions [J]. Nature, 2011, 480(7375): 51-56. doi: 10.1038/nature10580