[1] |
HU D, ZHANG C, MA B, et al. The characteristics of rainfall runoff pollution and its driving factors in Northwest semiarid region of China-A case study of Xi'an[J]. Science of the Total Environment, 2020, 726: 138384. doi: 10.1016/j.scitotenv.2020.138384
|
[2] |
LIU A, MUMMULLAGE S, MA Y. K, et al. Linking source characterization and human health risk assessment of metals to rainfall characteristics[J]. Environmental Pollution, 2018, 238: 866-873. doi: 10.1016/j.envpol.2018.03.077
|
[3] |
MA Y K, HAO S N, ZHAO H T, et al. Pollutant transport analysis and source apportionment of the entire non-point source pollution process in separate sewer systems[J]. Chemosphere, 2018, 211: 557-565. doi: 10.1016/j.chemosphere.2018.07.184
|
[4] |
曾思育, 董欣. 城市降雨径流污染控制技术的发展与实践[J]. 给水排水, 2015, 51(10): 1-3. doi: 10.3969/j.issn.1002-8471.2015.10.002
|
[5] |
刘学欣, 李珂, 陈学平, 等. 模拟生态种植槽对雨水径流的净化[J]. 环境工程学报, 2015, 9(6): 2682-2684. doi: 10.12030/j.cjee.20150623
|
[6] |
张智涌, 双学珍, 刘栋. 人工湿地对城市降雨径流污染物的削减效应[J]. 江苏农业科学, 2017, 45(15): 259-263. doi: 10.15889/j.issn.1002-1302.2017.15.066
|
[7] |
李娟, 张伟, 桑敏, 等. 生物滞留设施对雨水径流氮磷污染物净化机理和运行优化方式研究进展[J]. 环境工程, 2020, 38(4): 77-82. doi: 10.13205/j.hjgc.202004014
|
[8] |
NGUYEN X C, CHANG S W, NGUYEN T L, et al. A hybrid constructed wetland for organic-material and nutrient removal from sewage: process performance and multi-kinetic models[J]. Journal of Environmental Management, 2018, 222: 378-384.
|
[9] |
尹楚杰, 吕源财, 潘文斌. 人工湿地填料在废水中脱氮除磷的应用研究进展[J]. 现代化工, 2021, 41(7): 68-71. doi: 10.16606/j.cnki.issn0253-4320.2021.07.014
|
[10] |
LV T, CARVALHO P N, ZHANG L, et al. Functionality of microbial communities in constructed wetlands used for pesticide remediation: Influence of system design and sampling strategy[J]. Water Research, 2017, 110: 241-251. doi: 10.1016/j.watres.2016.12.021
|
[11] |
PELISSARI C, GUIVEMAU M, VI As M, et al. Effects of partially saturated conditions on the metabolically active microbiome and on nitrogen removal in vertical subsurface flow constructed wetlands[J]. Water Research, 2018, 141: 185-195. doi: 10.1016/j.watres.2018.05.002
|
[12] |
肖海文, 刘馨瞳, 翟俊, 等. 人工湿地类型的选择及案例分析[J]. 中国给水排水, 2021, 37(22): 11-17. doi: 10.19853/j.zgjsps.1000-4602.2021.22.002
|
[13] |
MüLLER A, ÖSTERLUND H, MARSALEK J, et al. The pollution conveyed by urban runoff: A review of sources[J]. Science of the Total Environment, 2020, 709: 136125. doi: 10.1016/j.scitotenv.2019.136125
|
[14] |
HU Y S, ZHAO Y Q, ZHAO X H, et al. Comprehensive analysis of step-feeding strategy to enhance biological nitrogen removal in alum sludge-based tidal flow constructed wetlands[J]. Bioresource Technology, 2012, 111: 27-35. doi: 10.1016/j.biortech.2012.01.165
|
[15] |
姚孟伟. 太原市大气降水化学特征及来源分析[D]. 太原: 太原科技大学, 2014.
|
[16] |
叶艾玲, 程明超, 张璐, 等. 太原市夏季降水中溶解态重金属特征及来源[J]. 环境科学, 2018, 39(7): 3075-3081. doi: 10.13227/j.hjkx.201710075
|
[17] |
来雪慧, 赵金安, 李丹, 等. 太原市工业区不同下垫面降雨径流污染特征[J]. 水土保持通报, 2015, 35(6): 97-100. doi: 10.13961/j.cnki.stbctb.20151209.001
|
[18] |
LUCKE T, NICHOLS P W B. The pollution removal and stormwater reduction performance of street-side bioretention basins after ten years in operation[J]. Science of the Total Environment, 2015, 536: 784-792. doi: 10.1016/j.scitotenv.2015.07.142
|
[19] |
范斌, 章诗辞, 刘琪, 等. 复合垂直流人工湿地—微滤复合系统净化雨水[J]. 武汉理工大学学报, 2017(11): 68-73.
|
[20] |
徐丽, 葛大兵, 谢小魁. 水力停留时间对人工湿地运行的影响[J]. 中国农学通报, 2014, 30(31): 219-223. doi: 10.11924/j.issn.1000-6850.2014-0621
|
[21] |
郭鹤方, 甄志磊, 赵林婷, 等. 潮汐流-潜流人工湿地对城市污染水体中氮的去除[J]. 环境化学, 2021, 40(12): 3887-3897. doi: 10.7524/j.issn.0254-6108.2021053002
|
[22] |
JFW A, CYZ A, BSW B, et al. Regulation of heavy metals accumulated by Acorus calamus L. in constructed wetland through different nitrogen forms[J]. Chemosphere, 2021, 281: 130773. doi: 10.1016/j.chemosphere.2021.130773
|
[23] |
XIA Z, LIU G, SHE Z, et al. Performance and bacterial communities in unsaturated and saturated zones of a vertical-flow constructed wetland with continuous-feed[J]. Bioresource Technology, 2020, 315: 123859. doi: 10.1016/j.biortech.2020.123859
|
[24] |
黄小龙, 郭亮, 汪尚朋, 等. 表面流—垂直流复合湿地去除低碳氮比河水中氨氮[J]. 中国给水排水, 2018, 34(15): 70-74.
|
[25] |
赵桂瑜, 杨永兴, 杨长明. 人工湿地污水处理系统脱氮机理研究进展[J]. 四川环境, 2005(5): 64-67. doi: 10.3969/j.issn.1001-3644.2005.05.020
|
[26] |
BODELIER P, LIBOCHANT J A, BLOM C, et al. Dynamics of nitrification and denitrification in root-oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats[J]. Applied and Environmental Microbiology, 1996, 62(11): 4100-4107. doi: 10.1128/aem.62.11.4100-4107.1996
|
[27] |
王海涛, 郑天凌, 杨小茹. 土壤反硝化的分子生态学研究进展及其影响因素[J]. 农业环境科学学报, 2013, 32(10): 1915-1924. doi: 10.11654/jaes.2013.10.003
|
[28] |
GAGNON V, MALTAIS-LANDRY G, PUIGAGUT J, et al. Treatment of hydroponics wastewater using constructed wetlands in winter conditions[J]. Water, Air, & Soil Pollution, 2010, 212(1): 483-490.
|
[29] |
MATHESON F E, SUKIAS J P. Nitrate removal processes in a constructed wetland treating drainage from dairy pasture[J]. Ecological Engineering, 2010, 36(10): 1260-1265. doi: 10.1016/j.ecoleng.2010.05.005
|
[30] |
VYMAZAL J. Constructed Wetlands for Wastewater Treatment: Five Decades of Experience[J]. Environmental Science and Technology, 2011, 45(1): 61-69. doi: 10.1021/es101403q
|
[31] |
梁康, 常军军, 王飞华, 等. 垂直流人工湿地对尾水的净化效果及最佳水力负荷[J]. 湖泊科学, 2016, 28(1): 114-123. doi: 10.18307/2016.0113
|
[32] |
洪亚军, 冯承莲, 徐祖信, 等. 重金属对水生生物的毒性效应机制研究进展[J]. 环境工程, 2019, 37(11): 1-9.
|
[33] |
尹哲慧. 浅析水生植物腐烂分解对水质的影响[J]. 生物技术世界, 2015(5): 20.
|
[34] |
PENG, ZHOU, YIYONG, et al. Efficiency promotion and its mechanisms of simultaneous nitrogen and phosphorus removal in stormwater biofilters[J]. Bioresource Technology, 2016, 218: 842-849. doi: 10.1016/j.biortech.2016.07.039
|
[35] |
王琦, 赵骥, 但琼鹏, 等. 反硝化聚磷菌的培养富集及处理生活污水的稳定运行[J]. 化工学报, 2019, 70(12): 4828-4834.
|
[36] |
MUSTAPHA H I, BRUGGEN J, LENS P. Fate of heavy metals in vertical subsurface flow constructed wetlands treating secondary treated petroleum refinery wastewater in Kaduna, Nigeria[J]. International Journal of Phytoremediation, 2018, 20(1): 44-53. doi: 10.1080/15226514.2017.1337062
|
[37] |
PEDESCOLL A, SIDRACH-CARDONA R, HIJOSA-VALSERO M, et al. Design parameters affecting metals removal in horizontal constructed wetlands for domestic wastewater treatment[J]. Ecological Engineering, 2015, 80: 92-99. doi: 10.1016/j.ecoleng.2014.10.035
|
[38] |
GALLETTI A, VERLICCHI P, RANIERI E. Removal and accumulation of Cu, Ni and Zn in horizontal subsurface flow constructed wetlands: Contribution of vegetation and filling medium[J]. Science of the Total Environment, 2010, 408(21): 5097-5105. doi: 10.1016/j.scitotenv.2010.07.045
|
[39] |
GUO X, CUI X, LI H. Effects of fillers combined with biosorbents on nutrient and heavy metal removal from biogas slurry in constructed wetlands[J]. Science of the Total Environment, 2019, 703: 134788.
|
[40] |
宋兆齐, 王莉, 刘秀花, 等. 云南和西藏四处热泉中的厚壁菌门多样性[J]. 生物技术, 2015, 25(5): 481-436. doi: 10.16519/j.cnki.1004-311x.2015.05.0095
|
[41] |
CHOUARI R, Le PASLIER D, DAEGELEN P, et al. Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester[J]. Environmental Microbiology, 2005, 7(8): 1104-1115. doi: 10.1111/j.1462-2920.2005.00795.x
|
[42] |
QIU Z, ZHANG S, DING Y, et al. Comparison of Myriophyllum Spicatum and artificial plants on nutrients removal and microbial community in constructed wetlands receiving WWTPs effluents[J]. Bioresource Technology, 2021, 321: 124469. doi: 10.1016/j.biortech.2020.124469
|
[43] |
LI C, REN H, XU M, et al. Study on anaerobic ammonium oxidation process coupled with denitrification microbial fuel cells (MFCs) and its microbial community analysis[J]. Bioresource Technology, 2015, 175: 545-552. doi: 10.1016/j.biortech.2014.10.156
|
[44] |
侯素霞, 雷旭阳, 张辉, 等. 基于EEM与PCR-DGGE技术分析温度对蚯蚓堆肥处理城镇污泥的影响[J]. 生态环境学报, 2021, 30(5): 1060-1068. doi: 10.16258/j.cnki.1674-5906.2021.05.019
|
[45] |
LI L, HE C, JI G, et al. Nitrogen removal pathways in a tidal flow constructed wetland under flooded time constraints[J]. Ecological Engineering, 2015, 81: 266-271. doi: 10.1016/j.ecoleng.2015.04.073
|
[46] |
ZHAO Y, CAO X, SONG X, et al. Montmorillonite supported nanoscale zero-valent iron immobilized in sodium alginate (SA/Mt-NZVI) enhanced the nitrogen removal in vertical flow constructed wetlands (VF CWs)[J]. Bioresource Technology, 2018, 267: 608-617. doi: 10.1016/j.biortech.2018.07.072
|
[47] |
王娟丽. 给水厂污泥改良生物滞留系统对氮磷去除的优化探究[D]. 北京: 北京建筑大学, 2019.
|
[48] |
鲜文东, 张潇橦, 李文均. 绿弯菌的研究现状及展望[J]. 微生物学报, 2020, 60(9): 1801-1820. doi: 10.13343/j.cnki.wsxb.20200463
|
[49] |
XU M, LIU W, LI C, et al. Evaluation of the treatment performance and microbial communities of a combined constructed wetland used to treat industrial park wastewater[J]. Environmental Science and Pollution Research, 2016, 23(11): 10990-11001. doi: 10.1007/s11356-016-6181-8
|
[50] |
BELLINI M I, GUTIERREZ L, TARLERA S, et al. Isolation and functional analysis of denitrifies in an aquifer with high potential for denitrification[J]. Systematic and Applied Microbiology, 2013, 36(7): 505-516. doi: 10.1016/j.syapm.2013.07.001
|
[51] |
KANG Y, ZHANG J, XIE H, et al. Enhanced nutrient removal and mechanisms study in benthic fauna added surface-flow constructed wetlands: The role of Tubifex tubifex[J]. Bioresource Technology, 2017, 224: 157-165. doi: 10.1016/j.biortech.2016.11.035
|
[52] |
JIA F, LAI C, CHEN L, et al. Spatiotemporal and species variations in prokaryotic communities associated with sediments from surface-flow constructed wetlands for treating swine wastewater[J]. Chemosphere, 2017, 185: 1-10. doi: 10.1016/j.chemosphere.2017.06.132
|
[53] |
蒋志云, 韦佳敏, 缪新年, 等. ABR-MBR工艺反硝化除磷微生物群落特征分析[J]. 环境工程学报, 2019, 13(7): 1653-1661. doi: 10.12030/j.cjee.201810005
|
[54] |
刘思强, 信欣, 朱羽蒙, 等. 脱氮除磷功能菌泥强化低溶解氧ACF-BAF工艺处理猪场沼液效能及微生物种群分析[J]. 环境工程学报, 2022, 16(7): 2397-2407. doi: 10.12030/j.cjee.202201072
|
[55] |
王亚东, 王少坡, 郑莎莎, 等. 生物除磷系统的聚磷微生物种群及其检测方法[J]. 环境工程, 2015, 33(2): 21-26. doi: 10.13205/j.hjgc.201502005
|
[56] |
李慧, 刘丹丹, 陈文清. 反硝化聚磷菌的筛选及脱氮除磷特性[J]. 环境工程, 2016, 34(4): 25-28. doi: 10.13205/j.hjgc.201604006
|
[57] |
王文, 杨波, 代立春, 等. 滇池高效聚磷菌Rhodococcus sp. H的分离鉴定及除磷特性研究[J]. 安全与环境学报, 2020, 20(1): 216-224.
|
[58] |
段松青, 闫坤朋, 宋志文, 等. 基于不同填料的海水养殖系统的水质净化[J]. 环境工程学报, 2018, 12(8): 2210-2219.
|
[59] |
HERRMANN M, OPITZ S, HARZER R, et al. Attached and suspended denitrifier communities in pristine limestone aquifers harbor high fractions of potential autotrophs oxidizing reduced iron and sulfur compounds[J]. Microbial Ecology, 2017, 74(2): 264-277. doi: 10.1007/s00248-017-0950-x
|
[60] |
韦佳敏, 刘文如, 程洁红, 等. 反硝化除磷的影响因素及聚磷菌与聚糖菌耦合新工艺的研究进展[J]. 化工进展, 2020, 39(11): 4608-4618. doi: 10.16085/j.issn.1000-6613.2020-0179
|
[61] |
PENG W, XZ A, YW A, et al. Development of a novel denitrifying phosphorus removal and partial denitrification anammox (DPR+PDA) process for advanced nitrogen and phosphorus removal from domestic and nitrate wastewaters[J]. Bioresource Technology, 2021, 327: 124795. doi: 10.1016/j.biortech.2021.124795
|
[62] |
JI J, PENG Y, LI X, et al. A novel partial nitrification-synchronous anammox and endogenous partial denitrification (PN-SAEPD) process for advanced nitrogen removal from municipal wastewater at ambient temperatures[J]. Water Research, 2020, 175: 115690. doi: 10.1016/j.watres.2020.115690
|
[63] |
SAEED T, MIAH M J. Organic matter and nutrient removal in tidal flow-based microbial fuel cell constructed wetlands: Media and flood-dry period ratio[J]. Chemical Engineering Journal, 2021, 411: 128507. doi: 10.1016/j.cej.2021.128507
|
[64] |
沈舒婷, 耿卓凡, 李想, 等. 植物和基质在生态浮床去除农村地表径流氮磷中的作用[J]. 东南大学学报, 2022, 52(5): 933-942.
|